Skip to main content
Log in

An assessment of Arctic cloud water paths in atmospheric reanalyses

  • Articles
  • Physical Oceanography, Marine Meteorology and Marine Physics
  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The role of Arctic clouds in the recent rapid Arctic warming has attracted much attention. However, Arctic cloud water paths (CWPs) from reanalysis datasets have not been well evaluated. This study evaluated the CWPs as well as LWPs (cloud liquid water paths) and IWPs (cloud ice water paths) from five reanalysis datasets (MERRA-2, MERRA, ERA-Interim, JRA-55, and ERA5) against the COSP (Cloud Feedback Model Intercomparison Project Observations Simulator Package) output for MODIS from the MERRA-2 CSP (COSP satellite simulator) collection (defined as M2Modis in short). Averaged over 1980–2015 and over the Arctic region (north of 60°N), the mean CWPs of these five datasets range from 49.5 g/m2 (MERRA) to 82.7 g/m2 (ERA-Interim), much smaller than that from M2Modis (140.0 g/m2). However, the spatial distributions of CWPs, show similar patterns among these reanalyses, with relatively small values over Greenland and large values over the North Atlantic. Consistent with M2Modis, these reanalyses show larger LWPs than IWPs, except for ERA-Interim. However, MERRA-2 and MERRA underestimate the ratio of IWPs to CWPs over the entire Arctic, while ERA-Interim and JRA-55 overestimate this ratio. ERA5 shows the best performance in terms of the ratio of IWPs to CWPs. All datasets exhibit larger CWPs and LWPs in summer than in winter. For M2Modis, IWPs hold seasonal variation similar with LWPs over the land but opposite over the ocean. Following the Arctic warming, the trends in LWPs and IWPs during 1980–2015 show that LWPs increase and IWPs decrease across all datasets, although not statistically significant. Correlation analysis suggests that all datasets have similar interannual variability. The study further found that the inclusion of re-evaporation processes increases the humidity in the atmosphere over the land and that a more realistic liquid/ice phase can be obtained by independently treating the liquid and ice water contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Acknowledgements

We thank the groups of reanalyses for producing and making available their model output. All data used in this study are available online.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaomin Wang.

Additional information

Foundation item

The National Key R&D Program of China under contract No. 2018YFA0605904; the Global Change Research Program of China under contract No. 2015CB953900; the Innovative Platform Program of Chinese Arctic and Antarctic Administration under contract No. CXPT2020009; the Program of China Scholarships Council under contract No. 201908320511.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, M., Wang, Z., Wei, J. et al. An assessment of Arctic cloud water paths in atmospheric reanalyses. Acta Oceanol. Sin. 40, 46–57 (2021). https://doi.org/10.1007/s13131-021-1706-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-021-1706-5

Key words

Navigation