Skip to main content
Log in

Evidence of positive selection suggests possible role of aquaporins in the water-to-land transition of mudskippers

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Aquaporins are integral membrane proteins that exchange water and small solutes. They played an important role in the colonisation of terrestrial environments by tetrapod ancestors via the appearance of three exclusive paralogs. Like early tetrapods, mudskippers represent an independent case of amphibious lifestyle evolution that is unparalleled by other extant fish groups. Given this lifestyle parallelism and that aquaporins were relevant for tetrapod terrestrialisation, this study examines the aquaporins in mudskippers to investigate whether similar changes in aquaporins could have possibly occurred during their water-to-land transition. We have catalogued aquaporin genes in four mudskipper genomes and studied their diversity and molecular evolution (including detection of positive selection) in a broad phylogenetic context of vertebrates. Our genomic screening returned 55 aquaporin genes for mudskippers (none of them constituting novel paralogs) that can be assigned to 10 different known classes. We detected signatures of positive selection in AQP10a and AQP11b in mudskippers (both the entire clade and the clade containing the most terrestrial species, implying different evolutionary times). This suggests possible alteration of the molecular function of such paralogs caused by changes at specific protein sequence positions, some of them located in relatively close proximity to parts of the molecule involved in pore formation and substrate selectivity. Given the importance of aquaporins for osmotic regulation in fishes, it might be possible that these selective changes (perhaps allowing permeability to new solutes) could have played a role during the adaptation of mudskippers to an amphibious lifestyle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abascal, F., Zardoya, R., & Posada, D. (2005). ProtTest: selection of best-fit models of protein evolution what can I use ProtTest for ? – introduction the program: using ProtTest. Bioinformatics, 21, 1–17.

    Article  Google Scholar 

  • Abascal, F., Zardoya, R., & Telford, M. J. (2010). TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research, 38, 7–13.

    Article  CAS  Google Scholar 

  • Abascal, F., Irisarri, I., & Zardoya, R. (2014). Diversity and evolution of membrane intrinsic proteins. Biochimica et Biophysica Acta - General Subjects, 1840, 1468–1481.

    Article  CAS  Google Scholar 

  • Agorreta, A., San Mauro, D., Schliewen, U., van Tassell, J. L., Kovačić, M., Zardoya, R., & Rüber, L. (2013). Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Molecular Phylogenetics and Evolution, 69, 619–633.

    Article  PubMed  Google Scholar 

  • Agre, P., & Kozono, D. (2003). Aquaporin water channels: molecular mechanisms for human diseases. FEBS Letters, 555, 72–78.

    Article  CAS  PubMed  Google Scholar 

  • Agre, P., Preston, G. M., Smith, B. L., Jung, J. S., Raina, S., Moon, C., Guggino, W. B., & Nielsen, S. (1993). Aquaporin CHIP: the archetypal molecular water channel. The American Journal of Physiology, 265, F463–F476.

    CAS  PubMed  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Anderberg HI, Danielson JÅH, Johanson U (2011) Algal MIPs, high diversity and conserved motifs. BMC Evolutionary Biology 11.

  • Anisimova, M., & Yang, Z. (2007). Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Molecular Biology and Evolution, 24, 1219–1228.

    Article  CAS  PubMed  Google Scholar 

  • Apweiler, R. (2009). The universal protein resource (UniProt) in 2010. Nucleic Acids Research, 38, D142–D148.

    Google Scholar 

  • Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41, D36–D42.

    Article  CAS  PubMed  Google Scholar 

  • Broekhuyse, R. M., Kuhlmann, E. D., & Stols, A. L. H. (1976). Lens membranes II. Isolation and characterization of the main intrinsic polypeptide (MIP) of bovine lens fiber membranes. Experimental Eye Research, 23, 365–371.

    Article  CAS  PubMed  Google Scholar 

  • Carrol, R. L. (2001). The origin and early adaptation of terrestrial vertebrates. Journal of Paleontology, 75, 1202–1213.

    Article  Google Scholar 

  • Cerdà, J., & Finn, R. N. (2010). Piscine aquaporins: an overview of recent advances. Journal of Experimental Zoology. Part A, Ecological Genetics and Physiology, 313 A, 623–650.

    Article  CAS  Google Scholar 

  • Cheng, A., van Hoek, A. N., Yeager, M., et al. (1997). Three-dimensional organization of a human water channel. Nature, 387, 627–630.

    Article  CAS  PubMed  Google Scholar 

  • Chew, S. F., Sim, M. Y., Phua, Z. C., et al. (2007). Active ammonia excretion in the giant mudskipper, Periophthalmodon schlosseri (Pallas), during emersion. Journal of Experimental Zoology. Part A, Ecological Genetics and Physiology, 307, 357–369.

    Article  PubMed  Google Scholar 

  • Church, R. L., & Wang, J. (1992). Assignment of the lens intrinsic membrane protein MP19 structural gene to human chromosome 19. Current Eye Research, 11, 421–424.

    Article  CAS  PubMed  Google Scholar 

  • Connolly, D. L., Shanahan, C. M., & Weissberg, P. L. (1998). The aquaporins. A family of water channel proteins. The International Journal of Biochemistry & Cell Biology, 30, 169–172.

    Article  CAS  Google Scholar 

  • Crow, K. D., Stadler, P. F., Lynch, V. J., Amemiya, C., & Wagner, G. P. (2006). The “fish-specific” Hox cluster duplication is coincident with the origin of teleosts. Molecular Biology and Evolution, 23, 121–136.

    Article  CAS  PubMed  Google Scholar 

  • Cuvier, G., Valenciennes, A. (1837). Histoire naturelle des poissons. Tome. Chez F.G. Levrault, Paris 12:508

  • Dabruzzi, T. F., Wygoda, M. L., Wright, J. E., Eme, J., & Bennett, W. A. (2011). Direct evidence of cutaneous resistance to evaporative water loss in amphibious mudskipper (family Gobiidae) and rockskipper (family Blenniidae) fishes from Pulau Hoga, Southeast Sulawesi, Indonesia. Journal of Experimental Marine Biology and Ecology, 406, 125–129.

    Article  Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2011). ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics, 27, 1164–1165.

    Article  CAS  PubMed  Google Scholar 

  • Dehal, P., & Boore, J. L. (2005). Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biology, 3, e314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Escriva, H., Bertrand, S., Germain, P., et al. (2006). Neofunctionalization in vertebrates: the example of retinoic acid receptors. PLoS Genetics, 2, 0955–0965.

    Article  CAS  Google Scholar 

  • Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Systematic Biology, 27, 401–410.

    Article  Google Scholar 

  • Finn RN, Cerdà J (2011) Aquaporin evolution in fishes. Frontiers in Physiology, 44.

  • Finn, R. N., & Cerdà, J. (2015). Evolution and functional diversity of aquaporins. The Biological Bulletin, 229, 6–23.

    Article  CAS  PubMed  Google Scholar 

  • Finn, R. N., & Kristoffersen, B. A. (2007). Vertebrate vitellogenin gene duplication in relation to the “3R hypothesis”: correlation to the pelagic egg and the oceanic radiation of teleosts. PLoS One, 2, e169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finn, R. N., Chauvigné, F., Hlidberg, J. B., Cutler, C. P., & Cerdà, J. (2014). The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation. PLoS One, 9, e113686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y. L., & Postlethwait, J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics, 151, 1531–1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froger, A., Thomas, D., Delamarche, C., & Tallur, B. (1998). Prediction of functional residues in water channels and related proteins. Protein Science, 7, 1458–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, D. (2000). Structure of a glycerol-conducting channel and the basis for its selectivity. Science, 290, 481–486.

    Article  CAS  PubMed  Google Scholar 

  • Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., & Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham, J. B. (1997). Air-breathing fishes: evolution, diversity and adaptation. San Diego: Academic Press.

    Book  Google Scholar 

  • Graham, J. B., & Lee, H. J. (2004). Breathing air in air: in what ways might extant amphibious fish biology relate to prevailing concepts about early tetrapods, the evolution of vertebrate air breathing, and the vertebrate land transition? Physiological and Biochemical Zoology, 77, 720–731.

    Article  PubMed  Google Scholar 

  • Graham, J., Lee, H., & Wegner, N. (2007). Transition from water to land in an extant group of fishes: air breathing and the acquisition sequence of adaptations for amphibious life in oxudercine gobies. In M. Fernandes, F. Rantin, M. Glass, & B. Kapoor (Eds.), Fish respiration and environment (pp. 255–288). Enfield: Science Publishers.

    Google Scholar 

  • Han, M. V., Demuth, J. P., McGrath, C. L., et al. (2009). Adaptive evolution of young gene duplicates in mammals. Genome Research, 19, 859–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heymann, J. B., & Engel, A. (1999). Aquaporins: phylogeny, structure, and physiology of water channels. News in Physiological Sciences, 14, 187–193.

    CAS  PubMed  Google Scholar 

  • Heymann, J. B., & Engel, A. (2000). Structural clues in the sequences of the aquaporins. Journal of Molecular Biology, 295, 1039–1053.

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck, J. P., Ronquist, F. R., Nielsen, R., & Bollback, J. P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294, 2310–2314.

    Article  CAS  PubMed  Google Scholar 

  • Innan, H. (2009). Population genetic models of duplicated genes. Genetica, 137, 19–37.

    Article  CAS  PubMed  Google Scholar 

  • Ishimatsu, A., & Gonzales, T. (2011). Mudskippers: Front runners in the modern invasion of land. In R. A. Patzner, J. L. Van Tassell, M. Kovačić, & B. G. Kapoor (Eds.), The biology of gobies (pp. 609–638). CRC Press and Science Publishers.

  • Jaafar, Z., & Murdy, E. O. (2017). Fishes out of water: biology and ecology of mudskippers. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Jahn, T. P., Møller, A. L. B., Zeuthen, T., Holm, L. M., Klaerke, D. A., Mohsin, B., Kühlbrandt, W., & Schjoerring, J. K. (2004). Aquaporin homologues in plants and mammals transport ammonia. FEBS Letters, 574, 31–36.

    Article  CAS  PubMed  Google Scholar 

  • Johanson, Z. (2011). How vertebrates left the water. Acta Zoologica, 92, 10–12.

    Article  Google Scholar 

  • Jones, D. T., Taylor, W. R., & Thornton, J. M. (1992). The rapid generation of mutation data matrices from protein sequences. Bioinformatics, 8, 275–282.

    Article  CAS  Google Scholar 

  • Katoh, K., Rozewicki, J., Yamada, K. D. (2017). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform bbx108.

  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kok, W. K., Lim, C. B., Lam, T. J., & Ip, Y. K. (1998). The mudskipper Periophthalmodon schlosseri respires more efficiently on land than in water and vice versa for Boleophthalmus boddaerti. The Journal of Experimental Zoology, 280, 86–90.

    Article  Google Scholar 

  • Konno, N., Hyodo, S., Yamaguchi, Y., Matsuda, K., & Uchiyama, M. (2010). Vasotocin/V2-type receptor/aquaporin axis exists in African lungfish kidney but is functional only in terrestrial condition. Endocrinology, 151, 1089–1096.

    Article  CAS  PubMed  Google Scholar 

  • Kruse, E., Uehlein, N., & Kaldenhoff, R. (2006). The aquaporins. Genome Biology, 7, 206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laforenza, U., Bottino, C., & Gastaldi, G. (2016). Mammalian aquaglyceroporin function in metabolism. Biochimica et Biophysica Acta - Biomembranes, 1858, 1–11.

    Article  CAS  Google Scholar 

  • Lee, Y.-J., Choi, Y., & Ryu, B.-S. (1995). A taxonomic revision of the genus Periophthalmus (Pisces: Gobiidae) from Korea with description of a new species. Korean Journal of Ichthyology, 7, 120–127.

    Google Scholar 

  • Linnaeus, C. (1758). Systema Naturae, edition X, vol. 1 (Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata). Holmiae, 1, 230–338.

    Google Scholar 

  • Lynch, M., & Force, A. (2000). The probability of duplicate gene preservation by subfunctionalization. Genetics, 154, 459–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madeira, A., Fernández-Veledo, S., Camps, M., Zorzano, A., Moura, T. F., Ceperuelo-Mallafré, V., Vendrell, J., & Soveral, G. (2014). Human aquaporin-11 is a water and glycerol channel and localizes in the vicinity of lipid droplets in human adipocytes. Obesity, 22, 2010–2017.

    Article  CAS  PubMed  Google Scholar 

  • Madsen, S. S., Engelund, M. B., & Cutler, C. P. (2015). Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes. The Biological Bulletin, 229, 70–92.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, A., Cutler, C. P., Wilson, G. D., et al. (2005). Regulation of expression of two aquaporin homologs in the intestine of the European eel: effects of seawater acclimation and cortisol treatment. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 288, R1733–R1743.

    Article  CAS  PubMed  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop, GCE (pp 1–8).

  • Morishita, Y., Matsuzaki, T., Hara-chikuma, M., Andoo, A., Shimono, M., Matsuki, A., Kobayashi, K., Ikeda, M., Yamamoto, T., Verkman, A., Kusano, E., Ookawara, S., Takata, K., Sasaki, S., & Ishibashi, K. (2005). Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Molecular and Cellular Biology, 25, 7770–7779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriyama, Y., Ito, F., Takeda, H., Yano, T., Okabe, M., Kuraku, S., Keeley, F. W., & Koshiba-Takeuchi, K. (2016). Evolution of the fish heart by sub/neofunctionalization of an elastin gene. Nature Communications, 7, 10397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller, C., Sendler, M., & Hildebrandt, J.-P. (2006). Downregulation of aquaporins 1 and 5 in nasal gland by osmotic stress in ducklings, Anas platyrhynchos: implications for the production of hypertonic fluid. The Journal of Experimental Biology, 209, 4067–4076.

    Article  PubMed  CAS  Google Scholar 

  • Murdy, E. O. (1989). A taxonomic revision and cladistic analysis of the oxudercine gobies (Gobiidae: Oxudercinae). Records of the Australian Museum Supplement, 11, 1–93.

    Article  Google Scholar 

  • Murdy, E. O. (2011). Systematics of oxudercinae. In R. A. Patzner, J. L. Van Tassell, M. Kovačić, & B. G. Kapoor (Eds.), The biology of gobies (pp. 99–106). CRC Press and Science Publishers.

  • Nielsen, R., & Yang, Z. (1998). Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics, 148, 929–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogino, Y., Kuraku, S., Ishibashi, H., Miyakawa, H., Sumiya, E., Miyagawa, S., Matsubara, H., Yamada, G., Baker, M. E., & Iguchi, T. (2016). Neofunctionalization of androgen receptor by gain-of-function mutations in teleost fish lineage. Molecular Biology and Evolution, 33, 228–244.

    Article  CAS  PubMed  Google Scholar 

  • Ord, T. J., & Cooke, G. M. (2016). Repeated evolution of amphibious behavior in fish and its implications for the colonization of novel environments. Evolution (N Y), 70, 1747–1759.

    Google Scholar 

  • Pace, C. M., & Gibb, A. C. (2009). Mudskipper pectoral fin kinematics in aquatic and terrestrial environments. The Journal of Experimental Biology, 212, 2279–2286.

    Article  CAS  PubMed  Google Scholar 

  • Pallas, P. S. (1780). Spicilegia zoologica: quibus novae imprimis et obscurae animalium species iconibus, descriptionibus atque commentariis illustrantur. Berolini,Gottl, August, Lange.

  • Park, J. H., & Saier, M. H. (1996). Phylogenetic characterization of the MIP family of transmembrane channel proteins. The Journal of Membrane Biology, 153, 171–180.

    Article  CAS  PubMed  Google Scholar 

  • Polgar, G., Ghanbarifardi, M., Milli, S., Agorreta, A., Aliabadian, M., Esmaeili, H. R., & Khang, T. F. (2017). Ecomorphological adaptation in three mudskippers (Teleostei: Gobioidei: Gobiidae) from the Persian Gulf and the Gulf of Oman. Hydrobiologia, 795, 91–111.

    Article  Google Scholar 

  • Preston, G. M., & Agre, P. (1991). Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proceedings of the National Academy of Sciences, 88, 11110–11114.

    Article  CAS  Google Scholar 

  • R Development Core Team. (2016). R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna Austria 0:409.

  • Randall, D. J., Ip, Y. K., Chew, S. F., & Wilson, J. M. (2015). Air breathing and ammonia excretion in the giant mudskipper, Periophthalmodon schlosseri. Physiological and Biochemical Zoology, 77, 783–788.

    Article  Google Scholar 

  • Reeves, J. H. (1992). Heterogeneity in the substitution process of amino acid sites of proteins coded for by mitochondrial DNA. Journal of Molecular Evolution, 35, 17–31.

    Article  CAS  PubMed  Google Scholar 

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saad, R., Cohanim, A. B., Kosloff, M., Privman, E. (2018). Neofunctionalization in ligand binding sites of ant olfactory receptors. Genome Biology and Evolution.

  • Saitoh, Y., Ogushi, Y., Shibata, Y., Okada, R., Tanaka, S., & Suzuki, M. (2014). Novel vasotocin-regulated aquaporins expressed in the ventral skin of semiaquatic anuran amphibians: evolution of cutaneous water-absorbing mechanisms. Endocrinology, 155, 2166–2177.

    Article  PubMed  CAS  Google Scholar 

  • San Mauro, D., & Agorreta, A. (2010). Molecular systematics: a synthesis of the common methods and the state of knowledge. Cellular & Molecular Biology Letters, 15, 311–341.

    Article  CAS  Google Scholar 

  • São Pedro, S. L., Alves, J. M. P., Barreto, A. S., & De Souza Lima, A. O. (2015). Evidence of positive selection of aquaporins genes from Pontoporia blainvillei during the evolutionary process of cetaceans. PLoS One, 10, e0134516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saparov, S. M., Liu, K., Agre, P., & Pohl, P. (2007). Fast and selective ammonia transport by aquaporin-8. The Journal of Biological Chemistry, 282, 5296–5301.

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sui, H., Han, B. G., Lee, J. K., Walian, P., & Jap, B. K. (2001). Structural basis of water-specific transport through the AQP1 water channel. Nature, 414, 872–878.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, M., Hasegawa, T., Ogushi, Y., & Tanaka, S. (2007). Amphibian aquaporins and adaptation to terrestrial environments: a review. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 148, 72–81.

    Article  CAS  Google Scholar 

  • Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86.

    Google Scholar 

  • Taylor, J. S., Van de Peer, Y., Braasch, I., & Meyer, A. (2001). Comparative genomics provides evidence for an ancient genome duplication event in fish. Philosophical Transactions of the Royal Society B Biology Science, 356, 1661–1679.

    Article  CAS  Google Scholar 

  • Tingaud-Sequeira, A., Calusinska, M., Finn, R. N., Chauvigné, F., Lozano, J., & Cerdà, J. (2010). The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals. BioMed Central Evolutionary Biology, 10, 38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tipsmark, C. K., Sorensen, K. J., & Madsen, S. S. (2010). Aquaporin expression dynamics in osmoregulatory tissues of Atlantic salmon during smoltification and seawater acclimation. The Journal of Experimental Biology, 213, 368–379.

    Article  CAS  PubMed  Google Scholar 

  • Tsuhako, Y., Ishimatsu, A., Takeda, T., Huat, K. K., & Tachihara, K. (2003). The eggs and larvae of the giant mudskipper, Periophthalmodon schlosseri, collected from a mudflat in Penang, Malaysia. Ichthyological Research, 50, 178–181.

    Article  Google Scholar 

  • Virkki, L. V., Franke, C., Somieski, P., & Boron, W. F. (2002). Cloning and functional characterization of a novel aquaporin from Xenopus laevis oocytes. The Journal of Biological Chemistry, 277, 40610–40616.

    Article  CAS  PubMed  Google Scholar 

  • Wright, P. A., & Turko, A. J. (2016). Amphibious fishes: evolution and phenotypic plasticity. The Journal of Experimental Biology, 219, 2245–2259.

    Article  PubMed  Google Scholar 

  • Wu, B., & Beitz, E. (2007). Aquaporins with selectivity for unconventional permeants. Cellular and Molecular Life Sciences, 64, 2413–2421.

    Article  CAS  PubMed  Google Scholar 

  • Yakata, K., Hiroaki, Y., Ishibashi, K., Sohara, E., Sasaki, S., Mitsuoka, K., & Fujiyoshi, Y. (2007). Aquaporin-11 containing a divergent NPA motif has normal water channel activity. Biochimica et Biophysica Acta - Biomembranes, 1768, 688–693.

    Article  CAS  Google Scholar 

  • Yakata, K., Tani, K., & Fujiyoshi, Y. (2011). Water permeability and characterization of aquaporin-11. Journal of Structural Biology, 174, 315–320.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z. (1994). Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution, 39, 306–314.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24, 1586–1591.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z. (2008). Adaptive molecular evolution. In: Handbook of statistical genetics: third edition (pp 375–406).

    Chapter  Google Scholar 

  • Yang, Z., & Dos Reis, M. (2011). Statistical properties of the branch-site test of positive selection. Molecular Biology and Evolution, 28, 1217–1228.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z., Wong, W. S. W., & Nielsen, R. (2005). Bayes empirical Bayes inference of amino acid sites under positive selection. Molecular Biology and Evolution, 22, 1107–1118.

    Article  CAS  PubMed  Google Scholar 

  • You, X., Bian, C., Zan, Q., Xu, X., Liu, X., Chen, J., Wang, J., Qiu, Y., Li, W., Zhang, X., Sun, Y., Chen, S., Hong, W., Li, Y., Cheng, S., Fan, G., Shi, C., Liang, J., Tom Tang, Y., Yang, C., Ruan, Z., Bai, J., Peng, C., Mu, Q., Lu, J., Fan, M., Yang, S., Huang, Z., Jiang, X., Fang, X., Zhang, G., Zhang, Y., Polgar, G., Yu, H., Li, J., Liu, Z., Zhang, G., Ravi, V., Coon, S. L., Wang, J., Yang, H., Venkatesh, B., Wang, J., & Shi, Q. (2014). Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes. Nature Communications, 5, 5594.

    Article  CAS  PubMed  Google Scholar 

  • Zander, C. D. (2011). Morphological adaptations to special environments of gobies. In R. A. Patzner, J. L. Van Tassell, M. Kovačić, B. G. Kapoor (Eds.), The biology of gobies (pp 345–366). CRC Press and Science Publishers.

  • Zardoya, R. (2005). Phylogeny and evolution of the major intrinsic protein family. Biology of the Cell, 97, 397–414.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Taniguchi, T., Takita, T., & Ali, A. B. (2003). A study on the epidermal structure of Periophthalmodon and Periophthalmus mudskippers with reference to their terrestrial adaptation. Ichthyological Research, 50, 310–317.

    Article  Google Scholar 

  • Zhang, J., Nielsen, R., & Yang, Z. (2005). Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Molecular Biology and Evolution, 22, 2472–2479.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Antonio González-Martín, Aurora García-Dorado, and two anonymous reviewers for insightful comments on an earlier version of this manuscript. Some computational analyses were performed at the Altamira HPC cluster of the Institute of Physics of Cantabria (IFCA-CSIC), which is part of the Spanish Supercomputing Network.

Funding

D.S.M was funded by grants RYC-2011-09321 and CGL2012-40082 from the Ministry of Economy and Competitiveness of Spain. M.T was sponsored by predoctoral fellowship BES-2013-062723 of the Ministry of Economy and Competitiveness of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ainhoa Agorreta.

Electronic supplementary material

ESM 1

(PDF 6.77 MB)

ESM 2

(FAS 153 kb)

ESM 3

(FAS 46 kb)

ESM 4

(FAS 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorente-Martínez, H., Agorreta, A., Torres-Sánchez, M. et al. Evidence of positive selection suggests possible role of aquaporins in the water-to-land transition of mudskippers. Org Divers Evol 18, 499–514 (2018). https://doi.org/10.1007/s13127-018-0382-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-018-0382-6

Keywords

Navigation