Skip to main content
Log in

Focus on the details: morphological evidence supports new cryptic land flatworm (Platyhelminthes) species revealed with molecules

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

We found numerous dull brown land planarians of the subfamily Geoplaninae within native rainforests and in nearby man-disturbed habitats in Southeastern and South Brazil. Their external and internal morphology are similar to those of Obama ladislavii (Von Graff, 1899), with the exception of the luminous green dorsum of this species, from which a brownish-green variation is also known. Since morphological features commonly used to delimit geoplaninid species failed to distinguish them, we used coalescent and Bayesian-based molecular methods (GMYC, BPP). These methods indicated that we were actually dealing with three species, the greenish O. ladislavii, and two brownish, cryptic species. A meticulous morphological study of the specimens, including type material of O. ladislavii, allowed us to ascertain diagnostic features for each of the species, for which we also propose a molecular diagnosis. This integrative taxonomic study demonstrates the utility of molecular tools to weigh minor morphological features and thus to reveal otherwise cryptic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Figs. 4–5
Fig. 6
Figs. 7–8
Fig. 9
Figs. 10–12
Figs. 13–14
Fig. 15
Figs. 16–20
Figs. 21–22
Figs. 23–25
Fig. 26
Fig. 27
Figs. 28–33
Figs. 34–35
Fig. 36

Similar content being viewed by others

Abbreviations

cg:

cyanophil glands

cmc:

common muscle coat

cov:

common glandular ovovitelline duct

de:

dorsal epidermis

di:

dorsal insertion

dm:

dorsal cutaneous musculature

e:

eyes

eg:

erythrophil glands

ej:

ejaculatory duct

es:

esophagus

fa:

female atrium

fgd:

female genital duct

gm:

glandular margin

go:

gonopore

i:

intestine

im:

internal pharyngeal musculature

lu:

pharyngeal lumen

m:

mouth

ma:

male atrium

mc:

cutaneous musculature

mg:

glands with mixed secretion

mm:

parenchymal musculature

n:

nerve plate

o:

ovary

om:

outer pharyngeal musculature

ov:

ovovitelline ducts

p:

penis papilla

pp:

pharyngeal pouch

pv:

prostatic vesicle

rg:

rhabditogen glands

sc:

secretory cells

sd:

sperm duct

sg:

shell glands

sp:

sensory pits

sv:

spermiducal vesicle

t:

testes

v:

vitellaria

ve:

ventral epidermis

vi:

ventral insertion

vm:

ventral cutaneous musculature

xg:

xanthophil glands

References

  • Álvarez-Presas, M., & Riutort, M. (2014). Planarian (Platyhelminthes, Tricladida) diversity and molecular markers: a new view of an old group. Diversity, 6, 323–338.

    Article  Google Scholar 

  • Álvarez-Presas, M., Baguñà, J., & Riutort, M. (2008). Molecular phylogeny of land and freshwater planarians (Tricladida, Platyhelminthes): from freshwater to land and back. Molecular Phylogenetics and Evolution, 47, 555–568.

    Article  PubMed  Google Scholar 

  • Álvarez-Presas, M., Carbayo, F., Rozas, J., & Riutort, M. (2011). Land planarians (Platyhelminthes) as a model organism for fine-scale phylogeographic studies: understanding patterns of biodiversity in the Brazilian Atlantic Forest hotspot. Journal of Evolutionary Biology, 24, 887–896.

    Article  PubMed  Google Scholar 

  • Amaral, S. V., Hack I. R., Iturralde G. G. & Leal-Zanchet, A. M. (2014). 1518 Land flatworms (Platyhelminthes: Tricladida) in remnants of decid- 1519 uous forest in the northeast region of southern Brazil. Biota 1520 Neotropica 14(1), 1–6. http://www.biotaneotropica.org.br/v14n1/ 1521 pt/fullpaper?bn00714012014+en

  • Antunes, M. B., Marques, D. I. L., & Leal-Zanchet, A. M. (2008). Land flatworm (Platyhelminthes, Tricladida, Terricola) community composition in two areas of semi-caducifolius forest in Southern Brazil. Neotropical Biology and Conservation, 3, 34–38. 34.

    Google Scholar 

  • Antunes, M., Leal-Zanchet, A. M., & Fonseca, C. R. (2012). Habitat structure, soil properties, and food availability do not predict terrestrial flatworms occurrence in Araucaria forest sites. Pedobiologia, 55, 25–31.

    Article  Google Scholar 

  • Baptista, V. A., Matos, L. B., Fick, I. A., & Leal-Zanchet, A. M. (2006). Community composition of land planarians (Platyhelminthes, Tricladida, Terricola) of the National Park of Aparados da Serra, Brazil. Iheringia. Série Zoologia, 96, 293–297. http://dx.doi.org/10.1590/S0073-47212006000300004

  • Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K., Meier, R., Winker, K., Ingram, K., & Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148–155.

    Article  Google Scholar 

  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu CH, Xie D., Suchard, M., Rambaut, A. & Drummond A. (2014). BEAST2: A software platform for Bayesian evolutionary analysis. PLOS Computational Biology 10(4): doi: e1003537.

  • Carbayo, F., Leal-Zanchet, A. M., & Vieira, E. M. (2002). Terrestrial flatworm (Platyhelminthes: Tricladida: Terricola) diversity versus man-induced disturbance in an ombrophilous forest in southern Brazil. Biodiversity and Conservation, 11, 1091–1104.

    Article  Google Scholar 

  • Carbayo, F., Álvarez-Presas, M., Olivares, C. T., Marques, F. P. L., Froehlich, E. M., & Riutort, M. (2013). Molecular phylogeny of Geoplaninae (Platyhelminthes) challenges current classification: proposal of taxonomic actions. Zoologica Scripta, 42, 508–528. doi:10.1111/zsc.12019

  • Cason, J. E. (1950). A rapid one-step Mallory-Heidenhain stain for connective tissue. Stain Technology, 25(4), 225–226.

    CAS  PubMed  Google Scholar 

  • Castro, R. A., & Leal-Zanchet, A. M. (2005). Composição de comunidades de planárias terrestres (Platyhelminthes) em áreas de floresta estacional decidual e de campo na região central do Rio Grande do Sul, Brasil. Acta Biologica Leopondensia, 27, 147–150.

  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. doi:10.1038/nmeth.2109

  • Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7.

  • Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ezard, T., Fujisawa, T. & Barraclough, T.G. (2009) SPLITS: SPecies’ LImits by Threshold Statistics. Program and documentation. http://r-forge.r-project.org/projects/splits.

  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Fick, I. A., Leal-Zanchet, A. M., & Vieira, E. M. (2006). Community structure of land flatworms (Platyhelminthes, Terricola): comparisons between Araucaria and Atlantic forest in Southern Brazil. Invertebrate Biology, 125, 306–313. doi:10.111 1/j.1744-7410.2006.00062.x

  • Frankham, R., Ballou, J. D., Dudash, M. R., Eldridge, M. D. B., Fenster, C. B., Lacy, R. C., Mendelson, J. R., III, Porton, I. J., Ralls, K., & Ryder, O. A. (2012). Implications of different concepts for conserving biodiversity. Biological Conservation, 153, 25–31.

    Article  Google Scholar 

  • Froehlich, C. G. (1959). On Geoplanids from Brazil. Boletim da Faculdade de Filosofia, Ciências e Letras da Universidade de São Paulo, Série Zoologia, 22, 201–242.

    Google Scholar 

  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Hambäck, P., Weingartner, E., Ericson, L., Fors, L., Cassel-Lundhagen, A., Stenberg, J., & Bergsten, J. (2013). Bayesian species delimitation reveals generalist and specialist parasitic wasps on Galerucella beetles (Chrysomelidae): sorting by herbivore or plant host. BMC Evolutionary Biology, 13, 92.

    Article  PubMed Central  PubMed  Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhner, M. K. (2006). LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics (Oxford, England), 22, 768–770.

    Article  CAS  Google Scholar 

  • Leaché, A. D., & Fujita, M. K. (2010). Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). Proceedings. Biological sciences / The Royal Society, 277, 3071–3077.

    Article  Google Scholar 

  • Leal-Zanchet, A. M., & Carbayo, F. (2000). Fauna de planárias terrestres (Platyhelminthes, Tricladida, Terricola) da Floresta Nacional de São Francisco de Paula, RS, Brasil: Uma análise preliminar. Acta Biologica Leopoldensia, 22, 19–25.

    Google Scholar 

  • Leal-Zanchet, A. M., Baptista, V., Campos, L. M., & Raffo, J. F. (2011). Spatial and temporal patterns of land flatworm assemblages in Brazilian Araucaria forests. Invertebrate Biology, 130, 25–33. doi:10.1111/j.1744-7410.2010.00215.x

  • Lohse, K. (2009). Can mtDNA barcodes be used to delimit species? A response to Pons et al. (2006). Systematic Biology, 58, 439–442.

    Article  PubMed  Google Scholar 

  • Ogren, R., & Kawakatsu, M. (1990). Index to the species of the family Geoplanidae (Turbellaria, Tricladida, Terricola). Part I: Geoplaninae. Bull. Fuji Women’s College, 28, 79–166.

    Google Scholar 

  • Papadopoulou, A., Monaghan, M. T., Barraclough, T. G., & Vogler, A. P. (2009). Sampling error does not invalidate the Yule-Coalescent Model for species delimitation. A response to Lohse (2009). Systematic Biology, 58, 442–444.

    Article  Google Scholar 

  • Pfenninger, M. & Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7, 121. http://www.biomedcentral.com/1471-2148/7/121.

  • Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., & Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55, 595–609.

    Article  PubMed  Google Scholar 

  • Rambaut, A. & Drummond, A.J. (2007). Tracer v1.4. http://beast.bio.ed.ac.uk/Tracer.

  • Rannala, B., & Yang, Z. (2003). Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics, 164, 1645–1656.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sluys, R., Solà, E., Gritzalis, K., Vila-Farré, M., Mateos, E., & Riutort, M. (2013). Integrative delineation of species of Mediterranean freshwater planarians (Platyhelminthes: Tricladida: Dugesiidae). Zoological Journal of the Linnean Society, 169, 523–547.

    Article  Google Scholar 

  • Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.

    Article  CAS  PubMed  Google Scholar 

  • Talavera, G., & Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564–577.

    Article  CAS  PubMed  Google Scholar 

  • Vieites, D. R., Wollenberg, K. C., Andreone, F., Köhler, J., Glaw, F., & Vences, M. (2009). Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. Proceedings of the National Academy of Sciences of the United States of America, 106, 8267–8272.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Von Graff, L. (1899). Monographie der Turbellarien II. Tricladida Terricola (Landplanarien). Leipzig: Wilhelm Engelmann. 574 pp., 58 pl.

  • Yang, Z., & Rannala, B. (2010). Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences, 107, 9264–9269.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Instituto Chico Mendes de Conservação da Biodiversidade, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), FATMA (Fundação de Amparo e Tecnologia do Meio Ambiente de Santa Catarina), Departamento de Águas e Energia Elétrica do Governo do Estado de São Paulo (DAEE), for licensing the fieldwork. We are grateful to Ana Lúcia Ramos Seitenfus, Délio Endres Júnior, Lisandro Negrete, Luciméri Teixeira, Márcio Hisayuki Sasamori, Piter Kehoma Boll, Vanessa dos Anjos Baptista, Vanderli Dias and Welcy Santos (UNISINOS), Débora Redivo, Marília Jucá, Leonardo Zerbone, Welton Araújo, Claudia Olivares (USP) for their help in sampling flatworms. Tiago Francoy, Júlio Pedroni (USP) and Guilherme Pinto Cauduro (UNISINOS) are thanked for DNA sequencing part of the specimens. Letícia Ayres Guterres and Rafaela Canello (UNISINOS), Ana Cristina Machado Vasconcelos, Amanda Cseh, Yasmin P. Oliveira, Diego Amorim and Adriano Maximiano (EACH, USP) helped with histological processing. Helma Roggenbuck (Zoological Museum Hamburg, MH) is gratefully thanked for kindest support in loan and permission to section the type material of O. ladislavii. Helmut Sattmann and Stefan Szeiler (NHM) are acknowledged for friendly assistance to FC during stay in the museum. FC has financial support from Fundación de Amparo à Pesquisa do Estado de São Paulo (FAPESP Proc, 2014/13661-8). AMLZ had grants from the Brazilian Research Council (CNPq) and the Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS) in support of this work. Molecular work done at the Universitat de Barcelona (UB, Spain) has been funded by the Ministerio de Ciencia e Innovación, España (CGL2011-23466). SVA has a scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). MAP is grateful to the Sociedad Española de Genética (SEG) for the financial support to travel to Brazil where examined and made histological sections of some specimens used in this work. Two anonymous referees are acknowledged for their very valuable suggestions on an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Carbayo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 305 kb)

ESM 2

(DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Presas, M., Amaral, S.V., Carbayo, F. et al. Focus on the details: morphological evidence supports new cryptic land flatworm (Platyhelminthes) species revealed with molecules. Org Divers Evol 15, 379–403 (2015). https://doi.org/10.1007/s13127-014-0197-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-014-0197-z

Keywords

Navigation