Skip to main content
Log in

Understanding pacing postconditioning-mediated cardiac protection: a role of oxidative stress and a synergistic effect of adenosine

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

We and others have demonstrated a protective role for pacing postconditioning (PPC) against ischemia/reperfusion (I/R) injury in the heart; however, the underlying mechanisms behind these protective effects are not completely understood. In this study, we wanted to further characterize PPC-mediated cardiac protection, specifically identify optimal pacing sites; examine the role of oxidative stress; and test the existence of a potential synergistic effect between PPC and adenosine. Isolated rat hearts were subjected to coronary occlusion followed by reperfusion. PPC involved three, 30 s, episodes of alternating left ventricular (LV) and right atrial (RA) pacing. Multiple pacing protocols with different pacing electrode locations were used. To test the involvement of oxidative stress, target-specific agonists or antagonists were infused at the beginning of reperfusion. Hemodynamic data were digitally recorded, and cardiac enzymes, oxidant, and antioxidant status were chemically measured. Pacing at the LV or RV but not at the heart apex or base significantly (P < 0.001) protected against ischemia-reperfusion injury. PPC-mediated protection was completely abrogated in the presence of reactive oxygen species (ROS) scavenger, ebselen; peroxynitrite (ONOO) scavenger, uric acid; and nitric oxide synthase inhibitor, L-NAME. Nitric oxide (NO) donor, snap, however significantly (P < 0.05) protected the heart against I/R injury in the absence of PPC. The protective effects of PPC were significantly improved by adenosine. PPC-stimulated protection can be achieved by alternating LV and RA pacing applied at the beginning of reperfusion. NO, ROS, and the product of their interaction ONOO play a significant role in PPC-induced cardiac protection. Finally, the protective effects of PPC can be synergized with adenosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arstall MA, Sawyer DB, Fukazawa R, Kelly RA (1991) Cytokine-mediated apoptosis in cardiac myocytes: the role of inducible nitric oxide synthase induction and peroxynitrite generation. Circ Res 85:829–840

    Article  Google Scholar 

  2. Babiker FA, Hoteit LJ, Joseph S, Mustafa AS, Juggi JS (2012) The role of 17-beta estradiol in ischemic preconditioning protection of the heart. Exp Clin Cardiol 17:95–100

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Babiker FA, Joseph S, Juggi J (2014) The protective effects of 17beta-estradiol against ischemia-reperfusion injury and its effect on pacing postconditioning protection to the heart. J Physiol Biochem 70:151–162

    Article  CAS  PubMed  Google Scholar 

  4. Babiker FA, Lorenzen-Schmidt I, Mokelke E, Vanagt WY, Delhaas T (2010) Waltenberger J, Cleutjens JP, and Prinzen FW. Long-term protection and mechanism of pacing-induced postconditioning in the heart. Basic Res Cardiol 105:523–533

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beauloye C, Bertrand L, Horman S, Hue L (2011) AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc Res 90:224–233

    Article  CAS  PubMed  Google Scholar 

  7. Blanc JJ, Etienne Y, Gilard M et al. KG 1997 Evaluation of different ventricular pacing sites in patients with severe heart failure: results of an acute hemodynamic study. Circulation 96: 3273–3277.

  8. Brown GC, Borutaite V (2007) Nitric oxide and mitochondrial respiration in the heart. Cardiovasc Res 75:283–290

    Article  CAS  PubMed  Google Scholar 

  9. Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114:524–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cohen MV, Downey JM (2011) Ischemic postconditioning: from receptor to end-effector. Antioxid Redox Signal 14:821–831

    Article  CAS  PubMed  Google Scholar 

  11. Costa AD, Jakob R, Costa CL, Andrukhiv K, West IC, Garlid KD (2006) The mechanism by which the mitochondrial ATP-sensitive K+ channel opening and H2O2 inhibit the mitochondrial permeability transition. J Biol Chem 281:20801–20808

    Article  CAS  PubMed  Google Scholar 

  12. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111

    Article  CAS  PubMed  Google Scholar 

  13. Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285

    Article  CAS  PubMed  Google Scholar 

  14. Fan Y, Yang S, Zhang X, Cao Y, Huang Y (2012) Comparison of cardioprotective efficacy resulting from a combination of atorvastatin and ischaemic post-conditioning in diabetic and non-diabetic rats. Clin Exp Pharmacol Physiol 39:938–943

    Article  CAS  PubMed  Google Scholar 

  15. Ferrera R, Benhabbouche S, Bopassa JC, Li B, Ovize M (2009) One hour reperfusion is enough to assess function and infarct size with TTC staining in Langendorff rat model. Cardiovasc Drugs Ther 23:327–331

    Article  CAS  PubMed  Google Scholar 

  16. Folino A, Losano G, Rastaldo R (2013) Balance of nitric oxide and reactive oxygen species in myocardial reperfusion injury and protection. J Cardiovasc Pharmacol 62:567–575

    Article  CAS  PubMed  Google Scholar 

  17. Freixa X, Bellera N, Ortiz-Perez JT et al (2012) Ischaemic postconditioning revisited: lack of effects on infarct size following primary percutaneous coronary intervention. Eur Heart J 33:103–112

    Article  PubMed  Google Scholar 

  18. Hahn JY, Song YB, Kim EK et al (2013) Ischemic postconditioning during primary percutaneous coronary intervention: the effects of postconditioning on myocardial reperfusion in patients with ST-segment elevation myocardial infarction (POST) randomized trial. Circulation 128:1889–1896

    Article  CAS  PubMed  Google Scholar 

  19. Hausenloy DJ, Yellon DM (2009) Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis 204:334–341

    Article  CAS  PubMed  Google Scholar 

  20. Heusch G (2004) Postconditioning: old wine in a new bottle? J Am Coll Cardiol 44:1111–1112

    Article  PubMed  Google Scholar 

  21. Jeon YT, Hwang JW, Lim YJ, Kim AN, Park HP (2013) A combination of sevoflurane postconditioning and albumin increases Bcl-2 expression after transient global cerebral ischemia compared with either sevoflurane postconditioning or albumin alone. J Neurosurg Anesthesiol 25:43–50

    Article  PubMed  Google Scholar 

  22. Kupai K, Csonka C, Fekete V et al (2009) Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am J Physiol Heart Circ Physiol 297:H1729–H1735

    Article  CAS  PubMed  Google Scholar 

  23. Layland J, Carrick D, Lee M, Oldroyd K, Berry C (2014) Adenosine: physiology, pharmacology, and clinical applications. JACC Cardiovasc Interv 7:581–591

    Article  PubMed  Google Scholar 

  24. Lebuffe G, Schumacker PT, Shao ZH, Anderson T, Iwase H, Vanden Hoek TL (2003) ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel. Am J Physiol Heart Circ Physiol 284:H299–H308

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Loukili N, Rosenblatt-Velin N, Pacher P, Feihl F, Waeber B, Liaudet L (2013) Peroxynitrite is a key mediator of the cardioprotection afforded by ischemic postconditioning in vivo. PLoS One 8:e70331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Limalanathan S, Andersen GO, Klow NE, Abdelnoor M, Hoffmann P, Eritsland J (2014) Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI results of the POSTEMI (POstconditioning in ST-elevation myocardial infarction) randomized trial. J Am Heart Assoc 3:e000679

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lonborg JT (2015) Targeting reperfusion injury in the era of primary percutaneous coronary intervention: hope or hype? Heart 101:1612–1618

    Article  CAS  PubMed  Google Scholar 

  28. Nakano A, Liu GS, Heusch G, Downey JM, Cohen MV (2000) Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning. J Mol Cell Cardiol 32:1159–1167

    Article  CAS  PubMed  Google Scholar 

  29. Nielsen JC, Kristensen L, Andersen HR, Mortensen PT, Pedersen OL, Pedersen AK (2003) A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome: echocardiographic and clinical outcome. J Am Coll Cardiol 42:614–623

    Article  PubMed  Google Scholar 

  30. Obal D, Dettwiler S, Favoccia C, Scharbatke H, Preckel B, Schlack W (2005) The influence of mitochondrial KATP-channels in the cardioprotection of preconditioning and postconditioning by sevoflurane in the rat in vivo. Anesth Analg 101:1252–1260

    Article  CAS  PubMed  Google Scholar 

  31. Ovize M, Baxter GF, Di Lisa F et al (2010) Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 87:406–423

    Article  CAS  PubMed  Google Scholar 

  32. Penna C, Mancardi D, Raimondo S, Geuna S, Pagliaro P (2008) The paradigm of postconditioning to protect the heart. J Cell Mol Med 12:435–458

    Article  CAS  PubMed  Google Scholar 

  33. Penna C, Perrelli MG, Pagliaro P (2013) Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal 18:556–599

    Article  CAS  PubMed  Google Scholar 

  34. Penna C, Rastaldo R, Mancardi D et al (2006) Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res Cardiol 101:180–189

    Article  CAS  PubMed  Google Scholar 

  35. Pipicz M, Varga ZV, Kupai K et al (2015) Rapid ventricular pacing-induced postconditioning attenuates reperfusion injury: effects on peroxynitrite, RISK and SAFE pathways. Br J Pharmacol 172:3472–3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Raedschelders K, Ansley DM, Chen DD (2012) The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther 133:230–255

    Article  CAS  PubMed  Google Scholar 

  37. Rastaldo R, Cappello S, Di Stilo A, Folino A, Losano G, Pagliaro P (2012) A lipophilic nitric oxide donor and a lipophilic antioxidant compound protect rat heart against ischemia-reperfusion injury if given as hybrid molecule but not as a mixture. J Cardiovasc Pharmacol 59:241–248

    Article  CAS  PubMed  Google Scholar 

  38. Tan X, Zhang L, Jiang Y, Yang Y, Zhang W, Li Y, Zhang X (2013) Postconditioning ameliorates mitochondrial DNA damage and deletion after renal ischemic injury. Nephrol Dial Transplant 28:2754–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tessier-Vetzel D, Tissier R, Waintraub X, Ghaleh B, Berdeaux A (2006) Isoflurane inhaled at the onset of reperfusion potentiates the cardioprotective effect of ischemic postconditioning through a NO-dependent mechanism. J Cardiovasc Pharmacol 47:487–492

    CAS  PubMed  Google Scholar 

  40. Vanagt WY, Cornelussen RN, Baynham TC et al (2007) Pacing-induced dyssynchrony during early reperfusion reduces infarct size. J Am Coll Cardiol 49:1813–1819

    Article  PubMed  Google Scholar 

  41. Vanagt WY, Cornelussen RN, Poulina QP et al (2006) Pacing-induced dys-synchrony preconditions rabbit myocardium against ischemia/reperfusion injury. Circulation 114:I264–I269

    Article  PubMed  Google Scholar 

  42. Vinten-Johansen J, Zhao ZQ, Zatta AJ et al (2005) A new link in nature’s armor against myocardial ischemia-reperfusion injury. Basic Res Cardiol 100:295–310

    Article  CAS  PubMed  Google Scholar 

  43. Waltenberger J, Gelissen M, Bekkers SC et al (2014) Clinical pacing post-conditioning during revascularization after AMI. JACC Cardiovasc Imaging 7:620–626

    Article  PubMed  Google Scholar 

  44. Wang HC, Zhang HF, Guo WY et al (2006) Hypoxic postconditioning enhances the survival and inhibits apoptosis of cardiomyocytes following reoxygenation: role of peroxynitrite formation. Apoptosis 11:1453–1460

    Article  CAS  PubMed  Google Scholar 

  45. Wyman BT, Hunter WC, Prinzen FW, Faris OP, McVeigh ER (2002) Effects of single- and biventricular pacing on temporal and spatial dynamics of ventricular contraction. Am J Physiol Heart Circ Physiol 282:H372–H379

    CAS  PubMed  Google Scholar 

  46. Yang F, Xi L 2015 Postconditioning of ischemic heart by intermittent ventricular pacing at beginning of reperfusion: novel mechanisms and utilities in interventional cardiology. Am J Physiol Heart Circ Physiol ajpheart 00835 02015

  47. Yang XM, Krieg T, Cui L, Downey JM, Cohen MV (2004) NECA and bradykinin at reperfusion reduce infarction in rabbit hearts by signaling through PI3K, ERK, and NO. J Mol Cell Cardiol 36:411–421

    Article  CAS  PubMed  Google Scholar 

  48. Yetgin T, Magro M, Manintveld OC et al (2014) Impact of multiple balloon inflations during primary percutaneous coronary intervention on infarct size and long-term clinical outcomes in ST-segment elevation myocardial infarction: real-world postconditioning. Basic Res Cardiol 109:403

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yui H, Imaizumi U, Beppu H et al (2011) Comparative effects of verapamil, nicardipine, and nitroglycerin on myocardial ischemia/reperfusion injury. Anesthesiol Res Pract 2011:521084

    PubMed  PubMed Central  Google Scholar 

  50. Zhao ZQ, Corvera JS, Halkos ME et al (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588

    Article  CAS  PubMed  Google Scholar 

  51. Zorov DB, Juhaszova M, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc Res 83:213–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors want to pay special thanks to Kuwait University for the support by grant no. MY 02/10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawzi A. Babiker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babiker, F.A., Al-Jarallah, A. & Joseph, S. Understanding pacing postconditioning-mediated cardiac protection: a role of oxidative stress and a synergistic effect of adenosine. J Physiol Biochem 73, 175–185 (2017). https://doi.org/10.1007/s13105-016-0535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0535-z

Keywords

Navigation