Skip to main content

Advertisement

Log in

SIRT1 overexpression in skeletal muscle in vivo induces increased insulin sensitivity and enhanced complex I but not complex II–V functions in individual subsarcolemmal and intermyofibrillar mitochondria

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

SIRT1 is known to improve insulin resistance (IR), but whether this effect is direct or not is still unclear, and this question has not been addressed in vivo in the skeletal muscle. Therefore, we sought to test if acute overexpression of SIRT1 in skeletal muscle of high-fat diet (HFD) rats in vivo would affect subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial complexes I–V activities and antioxidant enzymes thereby improving insulin action. In vivo electrotransfer was used to overexpress SIRT1 in the skeletal muscle of rats fed HFD for 12 weeks. Skeletal muscle insulin sensitivity and downstream effects of SIRT1 on AMPK, SIRT3, and mitochondrial biogenesis were studied. Citrate synthase (CS), complexes I–V, oxidative stress, and antioxidant levels were assessed in SS and IMF mitochondria. HFD rats showed skeletal muscle IR as well as decreased SIRT1 and SIRT3 expressions, mitochondrial DNA (mtDNA), and mitochondrial biogenesis (p < 0.05). SS and IMF mitochondria displayed lower CS, complexes I–V, and antioxidant enzyme activities (p < 0.05). By contrast, moderate (~2.5 folds) SIRT1 overexpression attenuated HFD-induced skeletal muscle IR. This improvement was associated with increased AMPK, PGC-1α, SIRT3, and mtDNA expressions as well as SS and IMF mitochondrial CS and complexes I–V activities. Importantly, SIRT1 overexpression largely restored antioxidant enzyme activities and enhanced complex I but not complexes II–V functions in individual SS and IMF mitochondria. This study suggests that SIRT1 overexpression improved IR at least partly by targeting complex I functions of SS and IMF mitochondria through the activation of SIRT1 and SIRT3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HFD:

High-fat diet

IR:

Insulin resistance

PGC-lα:

Peroxisome proliferator-activated receptor-γ coactivator-1α

ROS:

Reactive oxygen species

SS:

Subsarcolemmal

IMF:

Intermyofibrillar

TA:

Tibialis anterior

SOL:

Soleus

GM:

Gastrocnemius

2-DG:

2-deoxy-d-glucose

GIR:

Glucose infusion rate

FFA:

Free fatty acid

TG:

Triglyceride

CS:

Citrate synthase

DCPIP:

Dichlorophenolindo-phenol

mtDNA:

Mitochondrial DNA

NRF-1:

Nuclear respiratory factor 1

mtTFA:

Mitochondrial transcription factor A

SOD:

Superoxide dismutase

FBG:

Fasting blood glucose

FINS:

Fasting insulin

References

  1. Alcendor RR, Gao S, Zhai P et al (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100:1512–1521

    Article  CAS  PubMed  Google Scholar 

  2. Beaudeux JL, Nivet-Antoine V, Giral P (2010) Resveratrol: a relevant pharmacological approach for the treatment of metabolic syndrome? Curr Opin Clin Nutr Metab Care 13:729–736

    Article  CAS  PubMed  Google Scholar 

  3. Cadenas R, Hoy AJ, Turner N et al (2009) Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes 58:550–558

    Article  Google Scholar 

  4. Chen LL, Hu X, Zheng J et al (2010) Increases in energy intake, insulin resistance and stress in rats before Wenchuan earthquake far from the epicenter. Exp Biol Med (Maywood) 235:1216–1223

    Article  CAS  Google Scholar 

  5. Chen LL, Zhang HH, Zheng J et al (2011) Resveratrol attenuates high-fat diet-induced insulin resistance by influencing skeletal muscle lipid transport and subsarcolemmal mitochondrial beta-oxidation. Metabolism 60:1598–1609

    Article  CAS  PubMed  Google Scholar 

  6. Cocheme HM, Murphy MP (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem 283:1786–1798

    Article  CAS  PubMed  Google Scholar 

  7. Dasgupta B, Milbrandt J (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A 104:7217–7222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Do GM, Jung UJ, Park HJ et al (2012) Resveratrol ameliorates diabetes-related metabolic changes via activation of AMP-activated protein kinase and its downstream targets in db/db mice. Mol Nutr Food Res 56:1282–1291

    Article  CAS  PubMed  Google Scholar 

  9. Feige JN, Lagouge M, Canto C et al (2008) Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 8:347–358

    Article  CAS  PubMed  Google Scholar 

  10. Gurd BJ, Yoshida Y, Lally J et al (2009) The deacetylase enzyme SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis. J Physiol 587:1817–1828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hoeks J, Schrauwen P (2012) Muscle mitochondria and insulin resistance: a human perspective. Trends Endocrinol Metab 23:444–450

    Article  CAS  PubMed  Google Scholar 

  12. Holloway GP, Benton CR, Mullen KL et al (2009) In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation. Am J Physiol Endocrinol Metab 296:E738–747

    Article  CAS  PubMed  Google Scholar 

  13. Jing E, Emanuelli B, Hirschey MD et al (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci U S A 108:14608–14613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kong X, Wang R, Xue Y et al (2010) Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5:e11707

    Article  PubMed Central  PubMed  Google Scholar 

  15. Li Y, Xu S, Giles A et al (2011) Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J 25:1664–1679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Li H, Xu M, Lee J et al (2012) Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice. Am J Physiol Endocrinol Metab 303:E1234–1244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lionetti L, Mollica MP, Crescenzo R et al (2007) Skeletal muscle subsarcolemmal mitochondrial dysfunction in high-fat fed rats exhibiting impaired glucose homeostasis. Int J Obes (Lond) 31:1596–1604

    Article  CAS  Google Scholar 

  18. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Nielsen J, Mogensen M, Vind BF et al (2010) Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. Am J Physiol Endocrinol Metab 298:E706–713

    Article  CAS  PubMed  Google Scholar 

  20. Park SJ, Ahmad F, Philp A et al (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Philp A, Chen A, Lan D et al (2011) Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise. J Biol Chem 286:30561–30570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Price NL, Gomes AP, Ling AJ et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Purushotham A, Schug TT, Xu Q et al (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9:327–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ramsey KM, Mills KF, Satoh A et al (2008) Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 7:78–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ryan MJ, Jackson JR, Hao Y et al (2010) Suppression of oxidative stress by resveratrol after isometric contractions in gastrocnemius muscles of aged mice. J Gerontol A Biol Sci Med Sci 65:815–831

    Article  PubMed  Google Scholar 

  26. Schertzer JD, Plant DR, Lynch GS (2006) Optimizing plasmid-based gene transfer for investigating skeletal muscle structure and function. Mol Ther 13:795–803

    Article  CAS  PubMed  Google Scholar 

  27. Sun C, Zhang F, Ge X et al (2007) SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 6:307–319

    Article  CAS  PubMed  Google Scholar 

  28. Turk G, Sonmez M, Aydin M et al (2008) Effects of pomegranate juice consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level in male rats. Clin Nutr 27:289–296

    Article  CAS  PubMed  Google Scholar 

  29. Um JH, Park SJ, Kang H et al (2010) AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59:554–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. van Loon LJ, Koopman R, Manders R et al (2004) Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab 287:E558–565

    Article  PubMed  Google Scholar 

  31. White AT, McCurdy CE, Philp A et al (2013) Skeletal muscle-specific overexpression of SIRT1 does not enhance whole-body energy expenditure or insulin sensitivity in young mice. Diabetologia 56:1629–1637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wright LE, Brandon AE, Hoy AJ et al (2011) Amelioration of lipid-induced insulin resistance in rat skeletal muscle by overexpression of Pgc-1beta involves reductions in long-chain acyl-CoA levels and oxidative stress. Diabetologia 54:1417–1426

    Article  CAS  PubMed  Google Scholar 

  33. Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9:407–416

    Article  PubMed  Google Scholar 

  34. Zheng J, Chen LL, Zhang HH et al (2012) Resveratrol improves insulin resistance of catch-up growth by increasing mitochondrial complexes and antioxidant function in skeletal muscle. Metabolism 61:954–965

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China grants 81300656 and 81300685.

Author contributions

All authors participated in the design, interpretation of the studies and analysis of the data, and review of the manuscript; H-HZ, P-JD, X-JM, P-YZ, and M-WS conducted the experiments; G-JQ and H-HZ wrote the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest regarding this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Jun Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HH., Qin, GJ., Li, XL. et al. SIRT1 overexpression in skeletal muscle in vivo induces increased insulin sensitivity and enhanced complex I but not complex II–V functions in individual subsarcolemmal and intermyofibrillar mitochondria. J Physiol Biochem 71, 177–190 (2015). https://doi.org/10.1007/s13105-015-0396-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0396-x

Keywords

Navigation