Skip to main content

Advertisement

Log in

Contribution of Apelin-17 to Collateral Circulation Following Cerebral Ischemic Stroke

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Apelin, an essential mediator of homeostasis, is crucially involved in cardiovascular diseases, including ischemic stroke. However, the functional roles of apelin-17 in cerebral collateral circulation and ischemic stroke protection are unknown. Here, we investigated the association between plasma apelin-17 levels and collateral circulation in patients with ischemic stroke and examined the mechanism undergirding the effects of apelin-17 on cerebral artery contraction and ischemic stroke protection in an animal model. Plasma nitric oxide (NO), apelin-17, and apelin-36 levels were assessed by enzyme-linked immunosorbent assays in ischemic stroke patients with good or poor collateral circulation and in healthy participants. Additionally, the effects of apelin-17 on rat basilar artery contractions (in vitro) and cerebral ischemia (in vivo) were determined using vessel tension measurements and nuclear magnetic resonance, respectively. Patients with good collateral circulation had significantly higher plasma apelin-17 and apelin-36 levels than both patients with poor collateral circulation and healthy participants and plasma NO levels significantly higher than those in healthy participants. In vitro, apelin-17 pretreatment markedly attenuated U46619-induced rat basilar artery contractions in an endothelium-dependent manner. Additionally, NO production or guanylyl cyclase inhibitors abolished the apelin-17 effect on U46619-induced vascular contraction. Intravenous pretreatment of rats with apelin-17 markedly reduced cerebral infarct volume at 24 h after middle cerebral artery occlusion. Plasma apelin-17 levels in ischemic stroke patients were positively associated with enhanced collateral circulation, which our animal study data suggested may have resulted from an apelin-17-induced cerebral artery dilation mediated through the NO–cGMP pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mokin M, Snyder KV, Siddiqui AH, Levy EI, Hopkins LN. Recent endovascular stroke trials and their impact on stroke systems of care. J Am Coll Cardiol. 2016;67:2645–55. https://doi.org/10.1016/j.jacc.2015.12.077.

    Article  PubMed  Google Scholar 

  2. Liebeskind DS. Collateral circulation. Stroke. 2003;34(9):2279–84. https://doi.org/10.1038/nrneurol.2009.193.

    Article  PubMed  Google Scholar 

  3. Martinon E, Lefevre PH, Thouant P, Osseby GV, Ricolfi F, Chavent A. Collateral circulation in acute stroke: assessing methods and impact: a literature review. J Neuroradiol. 2014;41:97–107. https://doi.org/10.1016/j.neurad.2014.02.001.

    Article  PubMed  Google Scholar 

  4. Liebeskind DS. Stroke: The currency of collateral circulation in acute ischemic stroke. Nat Rev Neurol. 2009;5:645–6. https://doi.org/10.1038/nrneurol.2009.193.

    Article  PubMed  Google Scholar 

  5. Liu J, Wang Y, Akamatsu Y, Lee CC, Stetler RA, Lawton MT, et al. Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials. Prog Neurobiol. 2014;115:138–56. https://doi.org/10.1016/j.pneurobio.2013.11.004.

    Article  Google Scholar 

  6. Schramm P, Schellinger PD, Fiebach JB, Heiland S, Jansen O, Knauth M, et al. Comparison of ct and ct angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke. 2002;33:2426–32. https://doi.org/10.1161/01.STR.0000032244.03134.37.

    Article  PubMed  Google Scholar 

  7. Fischer U, Arnold M, Nedeltchev K, Brekenfeld C, Ballinari P, Remonda L, et al. Nihss score and arteriographic findings in acute ischemic stroke. Stroke. 2005;36(10):2121–5. https://doi.org/10.1161/01.STR.0000182099.04994.fc.

    Article  PubMed  Google Scholar 

  8. Muir KW. Stroke in 2015: the year of endovascular treatment. Lancet Neurol. 2016;15:2–3.

    Article  PubMed  Google Scholar 

  9. Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, et al. Isolation and characterization of a novel endogenous peptide ligand for the human apj receptor. Biochem Biophys Res Commun. 1998;251(2):471–6. https://doi.org/10.1006/bbrc.1998.9489.

    Article  CAS  PubMed  Google Scholar 

  10. Than A, He HL, Chua SH, Xu D, Sun L, Leow MK, et al. Apelin enhances brown adipogenesis and browning of white adipocytes. J Biol Chem. 2015;290(23):14679–91. https://doi.org/10.1074/jbc.M115.643817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang Y, Lv SY, Ye W, Zhang L. Apelin/apj system and cancer. Clin Chim Acta. 2016;457:112–6. https://doi.org/10.1016/j.cca.2016.04.001.

    Article  CAS  Google Scholar 

  12. Wang C, Wen J, Zhou Y, Li L, Cui X, Wang J, et al. Apelin induces vascular smooth muscle cells migration via a pi3k/akt/foxo3a/mmp-2 pathway. Int J Biochem Cell Biol. 2015;69:173–82. https://doi.org/10.1016/j.biocel.2015.10.015.

    Article  CAS  PubMed  Google Scholar 

  13. Chapman NA, Dupre DJ, Rainey JK. The apelin receptor: physiology, pathology, cell signalling, and ligand modulation of a peptide-activated class a gpcr. Biochem Cell Biol. 2014;92(6):431–40. https://doi.org/10.1139/bcb-2014-0072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang W, McKinnie SM, Farhan M, Paul M, McDonald T, McLean B, et al. Angiotensin-converting enzyme 2 metabolizes and partially inactivates pyr-apelin-13 and apelin-17: physiological effects in the cardiovascular system. Hypertension. 2016;68:365–77. https://doi.org/10.1161/HYPERTENSIONAHA.115.06892.

    Article  CAS  PubMed  Google Scholar 

  15. Yu XH, Tang ZB, Liu LJ, Qian H, Tang SL, Zhang DW, et al. Apelin and its receptor apj in cardiovascular diseases. Clin Chim Acta. 2014;428:1–8. https://doi.org/10.1016/j.cca.2013.09.001.

    Article  CAS  PubMed  Google Scholar 

  16. Zhong JC, Yu XY, Huang Y, Yung LM, Lau CW, Lin SG. Apelin modulates aortic vascular tone via endothelial nitric oxide synthase phosphorylation pathway in diabetic mice. Cardiovasc Res. 2007;74(3):388–95. https://doi.org/10.1016/j.cardiores.2007.02.002.

    Article  CAS  PubMed  Google Scholar 

  17. Pisarenko OI, Lankin VZ, Konovalova GG, Serebryakova LI, Shulzhenko VS, Timoshin AA, et al. Apelin-12 and its structural analog enhance antioxidant defense in experimental myocardial ischemia and reperfusion. Mol Cell Biochem. 2014;391(1–2):241–50. https://doi.org/10.1007/s11010-014-2008-4.

    Article  CAS  PubMed  Google Scholar 

  18. Berry MF, Pirolli TJ, Jayasankar V, Burdick J, Morine KJ, Gardner TJ, et al. Apelin has in vivo inotropic effects on normal and failing hearts. Circulation 2004; 110(11 suppl 1):II187–93. doi:https://doi.org/10.1161/01.CIR.0000138382.57325.5c, II-187, II-193.

  19. Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K, et al. The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept. 2001;99(2):87–92. https://doi.org/10.1016/S0167-0115(01)00236-1.

    Article  CAS  PubMed  Google Scholar 

  20. Kuklinska AM, Sobkowicz B, Sawicki R, Musial WJ, Waszkiewicz E, Bolinska S, et al. Apelin: a novel marker for the patients with first st-elevation myocardial infarction. Heart Vessel. 2010;25:363–7. https://doi.org/10.1007/s00380-009-1217-3.

    Article  Google Scholar 

  21. Yang Y, Zhang XJ, Li LT, Cui HY, Zhang C, Zhu CH, et al. Apelin-13 protects against apoptosis by activating amp-activated protein kinase pathway in ischemia stroke. Peptides. 2016;75:96–100. https://doi.org/10.1016/j.peptides.2015.11.002.

    Article  CAS  PubMed  Google Scholar 

  22. Xin Q, Cheng B, Pan Y, Liu H, Yang C, Chen J, et al. Neuroprotective effects of apelin-13 on experimental ischemic stroke through suppression of inflammation. Peptides. 2015;63:55–62. https://doi.org/10.1016/j.peptides.2014.09.016.

    Article  CAS  PubMed  Google Scholar 

  23. Gu Q, Zhai L, Feng X, Chen J, Miao Z, Ren L, et al. Apelin-36, a potent peptide, protects against ischemic brain injury by activating the pi3k/akt pathway. Neurochem Int. 2013;63(6):535–40. https://doi.org/10.1016/j.neuint.2013.09.017.

    Article  CAS  PubMed  Google Scholar 

  24. Hu W, Jiang W, Ye L, Tian Y, Shen B, Wang K. Prospective evaluation of the diagnostic value of plasma apelin 12 levels for differentiating patients with moyamoya and intracranial atherosclerotic diseases. Sci Rep. 2017;7:5452. https://doi.org/10.1038/s41598-017-05664-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao R, Zhou M, Li J, Wang X, Su K, Hu J, et al. Increased trpp2 expression in vascular smooth muscle cells from high-salt intake hypertensive rats: the crucial role in vascular dysfunction. Mol Nutr Food Res. 2015;59(2):365–72. https://doi.org/10.1002/mnfr.201400465.

    Article  CAS  PubMed  Google Scholar 

  26. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91. https://doi.org/10.1161/01.STR.20.1.84.

    Article  CAS  Google Scholar 

  27. Jia YX, Lu ZF, Zhang J, Pan CS, Yang JH, Zhao J, et al. Apelin activates l-arginine/nitric oxide synthase/nitric oxide pathway in rat aortas. Peptides. 2007;28(10):2023–9. https://doi.org/10.1016/j.peptides.2007.07.016.

    Article  CAS  PubMed  Google Scholar 

  28. Maguire JJ, Kleinz MJ, Pitkin SL, Davenport AP. [pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension. 2009;54:598–604. https://doi.org/10.1161/HYPERTENSIONAHA.109.134619.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang YH. Nitric oxide signalling and neuronal nitric oxide synthase in the heart under stress. F1000Research 2017; 6:742. doi:https://doi.org/10.12688/f1000research.10128.1.

  30. Lv D, Li H, Chen L. Apelin and apj, a novel critical factor and therapeutic target for atherosclerosis. Acta Biochim Biophys Sin Shanghai. 2013;45(7):527–33. https://doi.org/10.1093/abbs/gmt040.

    Article  CAS  PubMed  Google Scholar 

  31. Yang Y, Zhang X, Cui H, Zhang C, Zhu C, Li L. Apelin-13 protects the brain against ischemia/reperfusion injury through activating pi3k/akt and erk1/2 signaling pathways. Neurosci Lett. 2014;568:44–9. https://doi.org/10.1016/j.neulet.2014.03.037.

    Article  CAS  PubMed  Google Scholar 

  32. Japp AG, Cruden NL, Amer DA, Li VK, Goudie EB, Johnston NR, et al. Vascular effects of apelin in vivo in man. J Am Coll Cardiol. 2008;52(11):908–13. https://doi.org/10.1016/j.jacc.2008.06.013.

    Article  CAS  PubMed  Google Scholar 

  33. Palmi M, Meini A. Role of the nitric oxide/cyclic gmp/ca2+ signaling pathway in the pyrogenic effect of interleukin-1beta. Mol Neurobiol. 2002;25(2):133–47. https://doi.org/10.1385/MN:25:2:133.

    Article  CAS  PubMed  Google Scholar 

  34. Vandael DH, Mahapatra S, Calorio C, Marcantoni A, Carbone E. Cav1.3 and cav1.2 channels of adrenal chromaffin cells: emerging views on camp/cgmp-mediated phosphorylation and role in pacemaking. Biochim Biophys Acta. 2013;1828(7):1608–18. https://doi.org/10.1016/j.bbamem.2012.11.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Lei Zhan for editing the English text in a draft of this manuscript.

Funding

The present study was supported by grants from the National Key Research and Development Program of China (2016YFC1300600); Natural Science Foundation of China (Grant No. 81371284, 81570403, 81600286); Overseas Scholars Start Fund from Department of Human Resources and Social Security of Anhui Province; Outstanding Young Investigator of Anhui Medical University; Anhui Provincial Natural Science Foundation (Grant Nos. 1708085MH187, 1508085QH164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Shen.

Ethics declarations

Research Involving Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Hu, W., Ye, L. et al. Contribution of Apelin-17 to Collateral Circulation Following Cerebral Ischemic Stroke. Transl. Stroke Res. 10, 298–307 (2019). https://doi.org/10.1007/s12975-018-0638-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-018-0638-7

Keywords

Navigation