Skip to main content

Advertisement

Log in

The Rabbit Shunt Model of Subarachnoid Haemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Aneurysmal subarachnoid haemorrhage (SAH) is a disease with devastating complications that leads to stroke, permanent neurological deficits and death. Clinical and ex-perimental work has demonstrated the importance of the contribution of delayed cerebral vasospasm (DCVS) indepen-dent early events to mortality, morbidity and functional out-come after SAH. In order to elucidate processes involved in early brain injury (EBI), animal models that reflect acute events of aneurysmal bleeding, such as increase in intracranial pressure (ICP) and decrease in cerebral perfusion pressure, are needed. In the presented arterial shunt model, bleeding is initially driven by the pressure gradient between mean arterial blood pressure and ICP. SAH dynamics (flow rate, volume and duration) depend on physiological reactions and local anatomical intrathecal (cistern) conditions. During SAH, ICP reaches a plateau close to diastolic arterial blood pressure and the blood flow stops. Historical background, anaesthesia, perioperative care and monitoring, SAH induction, technical considerations and advantages and limitations of the rabbit blood shunt SAH model are discussed in detail. Awareness of technical details, physiological characteristics and appropriate monitoring methods guarantees successful implementation of the rabbit blood shunt model and allows the study of both EBI and DCVS after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009;8(7):635–42. doi:10.1016/S1474-4422(09)70126-7.

    Article  PubMed  Google Scholar 

  2. Malmivaara K, Juvela S, Hernesniemi J, Lappalainen J, Siironen J. Health-related quality of life and cost-effectiveness of treatment in subarachnoid haemorrhage. Eur J Neurol Off J Eur Fed Neurol Soc. 2012;19(11):1455–61. doi:10.1111/j.1468-1331.2012.03744.x.

    CAS  Google Scholar 

  3. Johnston SC, Selvin S, Gress DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology. 1998;50(5):1413–8.

    Article  PubMed  CAS  Google Scholar 

  4. Ecker A, Riemenschneider PA. Arteriographic demonstration of spasm of the intracranial arteries, with special reference to saccular arterial aneurysms. J Neurosurg. 1951;8(6):660–7. doi:10.3171/jns.1951.8.6.0660.

    Article  PubMed  CAS  Google Scholar 

  5. Roux S, Breu V, Giller T, Neidhart W, Ramuz H, Coassolo P, et al. Ro 61–1790, a new hydrosoluble endothelin antagonist: general pharmacology and effects on experimental cerebral vasospasm. J Pharmacol Exp Ther. 1997;283(3):1110–8.

    PubMed  CAS  Google Scholar 

  6. Wanebo JE, Louis HG, Arthur AS, Zhou J, Kassell NF, Lee KS et al. Attenuation of cerebral vasospasm by systemic administration of an endothelin-A receptor antagonist, TBC 11251, in a rabbit model of subarachnoid hemorrhage. Neurosurgical focus. 1997;3(4):ARTICLE.

  7. Vajkoczy P, Meyer B, Weidauer S, Raabe A, Thome C, Ringel F, et al. Clazosentan (AXV-034343), a selective endothelin A receptor antagonist, in the prevention of cerebral vasospasm following severe aneurysmal subarachnoid hemorrhage: results of a randomized, double-blind, placebo-controlled, multicenter phase IIa study. J Neurosurg. 2005;103(1):9–17. doi:10.3171/jns.2005.103.1.0009.

    Article  PubMed  CAS  Google Scholar 

  8. Macdonald RL, Kassell NF, Mayer S, Ruefenacht D, Schmiedek P, Weidauer S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke J Cereb Circ. 2008;39(11):3015–21. doi:10.1161/STROKEAHA.108.519942.

    Article  CAS  Google Scholar 

  9. Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol. 2011;10(7):618–25. doi:10.1016/S1474-4422(11)70108-9.

    Article  PubMed  CAS  Google Scholar 

  10. Bederson JB, Levy AL, Ding WH, Kahn R, DiPerna CA, Jenkins 3rd AL, et al. Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery. 1998;42(2):352–60. discussion 60–2.

    Article  PubMed  CAS  Google Scholar 

  11. Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke J Cereb Circ. 2002;33(5):1225–32.

    Article  Google Scholar 

  12. Siironen J, Porras M, Varis J, Poussa K, Hernesniemi J, Juvela S. Early ischemic lesion on computed tomography: predictor of poor outcome among survivors of aneurysmal subarachnoid hemorrhage. J Neurosurg. 2007;107(6):1074–9. doi:10.3171/JNS-07/12/1074.

    Article  PubMed  Google Scholar 

  13. Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31(2):151–8. doi:10.1179/174313209X393564.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Sehba FA, Pluta RM, Zhang JH. Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol. 2011;43(1):27–40. doi:10.1007/s12035-010-8155-z.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Cahill J, Zhang JH. Subarachnoid hemorrhage: is it time for a new direction? Stroke J Cereb Circ. 2009;40(3 Suppl):S86–7. doi:10.1161/STROKEAHA.108.533315.

    Article  Google Scholar 

  16. Marbacher S, Fandino J, Kitchen ND. Standard intracranial in vivo animal models of delayed cerebral vasospasm. Br J Neurosurg. 2010;24(4):415–34. doi:10.3109/02688691003746274.

    Article  PubMed  Google Scholar 

  17. Edvinsson L, Egund N, Owman C, Sahlin C, Svendgaard NA. Reduced noradrenaline uptake and retention in cerebrovascular nerves associated with angiographically visible vasoconstriction following experimental subarachnoid hemorrhage in rabbits. Brain Res Bull. 1982;9(1–6):799–805.

    Article  PubMed  CAS  Google Scholar 

  18. Liszczak TM, Black PM, Tzouras A, Foley L, Zervas NT. Morphological changes of the basilar artery, ventricles, and choroid plexus after experimental SAH. J Neurosurg. 1984;61(3):486–93. doi:10.3171/jns.1984.61.3.0486.

    Article  PubMed  CAS  Google Scholar 

  19. Chan RC, Durity FA, Thompson GB, Nugent RA, Kendall M. The role of the prostacyclin-thromboxane system in cerebral vasospasm following induced subarachnoid hemorrhage in the rabbit. J Neurosurg. 1984;61(6):1120–8. doi:10.3171/jns.1984.61.6.1120.

    Article  PubMed  CAS  Google Scholar 

  20. Endo S, Branson PJ, Alksne JF. Experimental model of symptomatic vasospasm in rabbits. Stroke J Cereb Circ. 1988;19(11):1420–5.

    Article  CAS  Google Scholar 

  21. Baker KF, Zervas NT, Pile-Spellman J, Vacanti FX, Miller D. Angiographic evidence of basilar artery constriction in the rabbit: a new model of vasospasm. Surg Neurol. 1987;27(2):107–12.

    Article  PubMed  CAS  Google Scholar 

  22. Spallone A, Pastore FS. Cerebral vasospasm in a double-injection model in rabbit. Surg Neurol. 1989;32(6):408–17.

    Article  PubMed  CAS  Google Scholar 

  23. Zhou ML, Shi JX, Zhu JQ, Hang CH, Mao L, Chen KF, et al. Comparison between one- and two-hemorrhage models of cerebral vasospasm in rabbits. J Neurosci Methods. 2007;159(2):318–24. doi:10.1016/j.jneumeth.2006.07.026.

    Article  PubMed  Google Scholar 

  24. Logothetis J, Karacostas D, Karoutas G, Artemis N, Mansouri A, Milonas I. A new model of subarachnoid hemorrhage in experimental animals with the purpose to examine cerebral vasospasm. Exp Neurol. 1983;81(2):257–78.

    Article  PubMed  CAS  Google Scholar 

  25. Egemen N, Sanlidilek U, Zorlutuna A, Baskaya M, Bilgic S, Caglar S, et al. Transclival approach to rabbit basilar artery for experimental induction of chronic vasospasm. Acta Neurochir. 1992;115(3–4):123–6.

    Article  PubMed  CAS  Google Scholar 

  26. Steiner L, Lofgren J, Zwetnow NN. Characteristics and limits of tolerance in repeated subarachnoid hemorrhage in dogs. Acta Neurol Scand. 1975;52(4):241–67.

    Article  PubMed  CAS  Google Scholar 

  27. McCormick PW, McCormick J, Zabramski JM, Spetzler RF. Hemodynamics of subarachnoid hemorrhage arrest. J Neurosurg. 1994;80(4):710–5. doi:10.3171/jns.1994.80.4.0710.

    Article  PubMed  CAS  Google Scholar 

  28. Trojanowski T. Experimental subarachnoid haemorrhage. Part I: a new approach to subarachnoid blood injection in cats. Acta Neurochir. 1982;62(3–4):171–5.

    Article  PubMed  CAS  Google Scholar 

  29. Offerhaus L, van Gool J. Electrocardiographic changes and tissue catecholamines in experimental subarachnoid haemorrhage. Cardiovasc Res. 1969;3(4):433–40.

    Article  PubMed  CAS  Google Scholar 

  30. Zhao W, Ujiie H, Tamano Y, Akimoto K, Hori T, Takakura K. Sudden death in a rat subarachnoid hemorrhage model. Neurol Med Chir. 1999;39(11):735–41. discussion 41–3.

    Article  CAS  Google Scholar 

  31. Marbacher S, Sherif C, Neuschmelting V, Schlappi JA, Takala J, Jakob SM, et al. Extra-intracranial blood shunt mimicking aneurysm rupture: intracranial-pressure-controlled rabbit subarachnoid hemorrhage model. J Neurosci Methods. 2010;191(2):227–33. doi:10.1016/j.jneumeth.2010.07.004.

    Article  PubMed  Google Scholar 

  32. Marbacher S, Andereggen L, Neuschmelting V, Widmer HR, von Gunten M, Takala J, et al. A new rabbit model for the study of early brain injury after subarachnoid hemorrhage. J Neurosci Methods. 2012;208(2):138–45. doi:10.1016/j.jneumeth.2012.05.010.

    Article  PubMed  Google Scholar 

  33. Lin CL, Dumont AS, Su YF, Dai ZK, Cheng JT, Tsai YJ, et al. Attenuation of subarachnoid hemorrhage-induced apoptotic cell death with 17 beta-estradiol. Laboratory investigation. J Neurosurg. 2009;111(5):1014–22. doi:10.3171/2009.3.JNS081660.

    Article  PubMed  CAS  Google Scholar 

  34. Ondruska L, Rafay J, Okab AB, Ayoub MA, Al-Haidary AA, Samara EM, et al. Influence of elevated ambient temperature upon some physiological measurements of New Zealand white rabbits. Vet Med. 2011;56(4):180–6.

    Google Scholar 

  35. Nakajima M, Date I, Takahashi K, Ninomiya Y, Asari S, Ohmoto T. Effects of aging on cerebral vasospasm after subarachnoid hemorrhage in rabbits. Stroke J Cereb Circ. 2001;32(3):620–8.

    Article  CAS  Google Scholar 

  36. Hockel K, Trabold R, Scholler K, Torok E, Plesnila N. Impact of anesthesia on pathophysiology and mortality following subarachnoid hemorrhage in rats. Exp Transl Stroke Med. 2012;4(1):5. doi:10.1186/2040-7378-4-5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Barzago MM, Bortolotti A, Omarini D, Aramayona JJ, Bonati M. Monitoring of blood gas parameters and acid–base balance of pregnant and non-pregnant rabbits (Oryctolagus cuniculus) in routine experimental conditions. Lab Anim. 1992;26(2):73–9.

    Article  PubMed  CAS  Google Scholar 

  38. Schroeder CA, Smith LJ. Respiratory rates and arterial blood-gas tensions in healthy rabbits given buprenorphine, butorphanol, midazolam, or their combinations. J Am Assoc Lab Anim Sci. 2011;50(2):205–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Harper AM. Autoregulation of cerebral blood flow: influence of the arterial blood pressure on the blood flow through the cerebral cortex. J Neurol Neurosurg Psychiatry. 1966;29(5):398–403.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Markwalder TM, Grolimund P, Seiler RW, Roth F, Aaslid R. Dependency of blood flow velocity in the middle cerebral artery on end-tidal carbon dioxide partial pressure—a transcranial ultrasound Doppler study. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1984;4(3):368–72. doi:10.1038/jcbfm.1984.54.

    Article  CAS  Google Scholar 

  41. Hayakawa T, Waltz AG. Experimental subarachnoid hemorrhage from a middle cerebral artery. Neurologic deficits, intracranial pressures, blood pressures, and pulse rates. Stroke J Cereb Circ. 1977;8(4):421–6.

    Article  CAS  Google Scholar 

  42. Andereggen L, Neuschmelting V, von Gunten M, Widmer HR, Takala J, Jakob S, et al. The rabbit blood-shunt model for the study of acute and late sequelae of subarachnoid hemorrhage: technical aspects. J Vis Exp. 2014.

  43. Marbacher S, Milavec H, Neuschmelting V, Andereggen L, Erhardt S, Fandino J. Outer skull landmark-based coordinates for measurement of cerebral blood flow and intracranial pressure in rabbits. J Neurosci Methods. 2011;201(2):322–6. doi:10.1016/j.jneumeth.2011.08.009.

    Article  PubMed  Google Scholar 

  44. Levinger IM. Special features of the rabbit cerebroventricular system, studied by the casting method. J Anat. 1971;109(Pt 3):527–33.

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Andereggen L, Neuschmelting V, Von Gunten M, Widmer HR, Fandino J, Marbacher S. The role of microclot formation in an acute subarachnoid hemorrhage model in the rabbit. BioMed Research International. 2014.

  46. Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167(2):327–34. doi:10.1016/j.jneumeth.2007.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Marbacher S, Fathi AR, Muroi C, Coluccia D, Andereggen L, Neuschmelting V, et al. The rabbit blood shunt subarachnoid hemorrhage model. Acta neurochirurgica Supplement. 2014.

  48. Bederson JB, Germano IM, Guarino L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke J Cereb Circ. 1995;26(6):1086–91. Discussion 91–2.

    Article  CAS  Google Scholar 

  49. Kamii H, Kato I, Kinouchi H, Chan PH, Epstein CJ, Akabane A, et al. Amelioration of vasospasm after subarachnoid hemorrhage in transgenic mice overexpressing CuZn-superoxide dismutase. Stroke J Cereb Circ. 1999;30(4):867–71. discussion 72.

    Article  CAS  Google Scholar 

  50. Brawley BW, Strandness Jr DE, Kelly WA. The biphasic response of cerebral vasospasm in experimental subarachnoid hemorrhage. J Neurosurg. 1968;28(1):1–8. doi:10.3171/jns.1968.28.1.0001.

    Article  PubMed  CAS  Google Scholar 

  51. Nagai H, Suzuki Y, Sugiura M, Noda S, Mabe H. Experimental cerebral vasospasm. 1: factors contributing to early spasm. J Neurosurg. 1974;41(3):285–92.

    Article  PubMed  CAS  Google Scholar 

  52. Weir B, Erasmo R, Miller J, McIntyre J, Secord D, Mielke B. Vasospasm in response to repeated subarachnoid hemorrhages in the monkey. J Neurosurg. 1970;33(4):395–406. doi:10.3171/jns.1970.33.4.0395.

    Article  PubMed  CAS  Google Scholar 

  53. Jakubowski J, Bell BA, Symon L, Zawirski MB, Francis DM. A primate model of subarachnoid hemorrhage: change in regional cerebral blood flow, autoregulation carbon dioxide reactivity, and central conduction time. Stroke J Cereb Circ. 1982;13(5):601–11.

    Article  CAS  Google Scholar 

  54. Frosen J, Piippo A, Paetau A, Kangasniemi M, Niemela M, Hernesniemi J, et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke J Cereb Circ. 2004;35(10):2287–93. doi:10.1161/01.STR.0000140636.30204.da.

    Article  Google Scholar 

  55. Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke J Cereb Circ. 1999;30(7):1396–401.

    Article  CAS  Google Scholar 

  56. Jeon H, Ai J, Sabri M, Tariq A, Shang X, Chen G, et al. Neurological and neurobehavioral assessment of experimental subarachnoid hemorrhage. BMC Neurosci. 2009;10:103. doi:10.1186/1471-2202-10-103.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Buemi M, Grasso G, Corica F, Calapai G, Salpietro FM, Casuscelli T, et al. In vivo evidence that erythropoietin has a neuroprotective effect during subarachnoid hemorrhage. Eur J Pharmacol. 2000;392(1–2):31–4.

    Article  PubMed  CAS  Google Scholar 

  58. Marbacher S, Neuschmelting V, Graupner T, Jakob SM, Fandino J. Prevention of delayed cerebral vasospasm by continuous intrathecal infusion of glyceroltrinitrate and nimodipine in the rabbit model in vivo. Intensive Care Med. 2008;34(5):932–8. doi:10.1007/s00134-008-0995-x.

    Article  PubMed  CAS  Google Scholar 

  59. Neuschmelting V, Fathi AR, Hidalgo Staub ET, Marbacher S, Schroth G, Takala J, et al. Norepinephrine-induced hypertension dilates vasospastic basilar artery after subarachnoid haemorrhage in rabbits. Acta Neurochir. 2009;151(5):487–93. doi:10.1007/s00701-009-0287-4.

    Article  PubMed  Google Scholar 

  60. Fathi AR, Marbacher S, Graupner T, Wehrli F, Jakob SM, Schroth G, et al. Continuous intrathecal glyceryl trinitrate prevents delayed cerebral vasospasm in the single-SAH rabbit model in vivo. Acta Neurochir. 2011;153(8):1669–75. doi:10.1007/s00701-011-1049-7. discussion 75.

    Article  PubMed  Google Scholar 

  61. Chen G, Wu J, Sun C, Qi M, Hang C, Gong Y, et al. Potential role of JAK2 in cerebral vasospasm after experimental subarachnoid hemorrhage. Brain Res. 2008;1214:136–44. doi:10.1016/j.brainres.2008.03.085.

    Article  PubMed  CAS  Google Scholar 

  62. Zubkov AY, Aoki K, Parent AD, Zhang JH. Preliminary study of the effects of caspase inhibitors on vasospasm in dog penetrating arteries. Life Sci. 2002;70(25):3007–18.

    Article  PubMed  CAS  Google Scholar 

  63. Hart MN, O’Donnell SL. Effects of formaldehyde fixation on basilar artery caliber. Stroke J Cereb Circ. 1980;11(1):99–100.

    Article  CAS  Google Scholar 

  64. Zheng B, Zheng T, Wang L, Chen X, Shi C, Zhao S. Aminoguanidine inhibition of iNOS activity ameliorates cerebral vasospasm after subarachnoid hemorrhage in rabbits via restoration of dysfunctional endothelial cells. J Neurol Sci. 2010;295(1–2):97–103. doi:10.1016/j.jns.2010.04.012.

    Article  PubMed  CAS  Google Scholar 

  65. Shao Z, Li J, Zhao Z, Gao C, Sun Z, Liu X. Effects of tetramethylpyrazine on nitric oxide/cGMP signaling after cerebral vasospasm in rabbits. Brain Res. 2010;1361:67–75. doi:10.1016/j.brainres.2010.09.011.

    Article  PubMed  CAS  Google Scholar 

  66. Laslo AM, Eastwood JD, Pakkiri P, Chen F, Lee TY. CT perfusion-derived mean transit time predicts early mortality and delayed vasospasm after experimental subarachnoid hemorrhage. AJNR Am J Neuroradiol. 2008;29(1):79–85. doi:10.3174/ajnr.A0747.

    Article  PubMed  CAS  Google Scholar 

  67. Sasani M, Yazgan B, Celebi I, Aytan N, Catalgol B, Oktenoglu T, et al. Hypercholesterolemia increases vasospasm resulting from basilar artery subarachnoid hemorrhage in rabbits which is attenuated by vitamin E. Surg Neurol Int. 2011;2:29. doi:10.4103/2152-7806.77600.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Goksel HM, Ozum U, Oztoprak I. The therapeutic effect of continuous intracisternal l-Arginine infusion on experimental cerebral vasospasm. Acta Neurochir. 2001;143(3):277–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Erica Holt, Editorial Office, Department of Neurosurgery, Aarau, Switzerland, for proofreading and editing the final manuscript. We appreciate the skillful management of animal care, anaesthesia and operative assistance from Daniel Mettler, DVM; Max Müller, DVM; and Daniel Zalokar and Olgica Beslac, Experimental Surgical Institute, Department of Clinical Research, University of Bern, Bern, Switzerland. We thank Michael Lensch, Head Research Nurse, Department of Intensive Care Medicine, Bern University Hospital and University of Bern, Bern, Switzerland, for real-time data monitoring and post-processing of the physiological parameters.

Sources of Funding

This work was supported by the Department of Intensive Care Medicine, Bern University Hospital and University of Bern, Bern, Switzerland; the Department of Clinical Research, University of Bern, Bern, Switzerland and the Research Fund from the Kantonsspital Aarau, Aarau, Switzerland. We thank Informa Healthcare, for re-print permission for Fig. 1.

Compliance with Ethics Requirements

The study was performed in accordance with the National Institutes of Health guidelines for the care and use of experimental animals and with the approval of the Animal Care Committee of the Canton of Bern, Switzerland. All surgical procedures were performed under sterile conditions at the Experimental Surgical Institute of the Department of Clinical Research at Bern University Hospital in Bern, Switzerland. A veterinary anaesthesiologist monitored the animals during surgery and throughout recovery.

Conflict of Interest

None. The authors have no financial or commercial interest in any of the drugs, materials or equipment used. The authors are solely responsible for the design and conduct of the presented study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Marbacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marbacher, S., Nevzati, E., Croci, D. et al. The Rabbit Shunt Model of Subarachnoid Haemorrhage. Transl. Stroke Res. 5, 669–680 (2014). https://doi.org/10.1007/s12975-014-0369-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-014-0369-3

Keywords

Navigation