Skip to main content
Log in

Contrast-induced acute kidney injury

  • Invited Review Article
  • Published:
Cardiovascular Intervention and Therapeutics Aims and scope Submit manuscript

Abstract

Although major advancements in the field of cardiology have allowed for an increasing number of patients to undergo minimally invasive imaging and interventional procedures, contrast-induced acute kidney injury (CI-AKI) continues to be a dreaded complication among patients receiving intravascular contrast media. CI-AKI is characterized by progressive decline in kidney function within a few days of contrast medium administration. Physiological changes resulting from the direct nephrotoxic effect of contrast media on tubular epithelial cells and release of vasoactive molecules have been implicated in creating a state of increased oxidative stress and subsequent ischemic renal cell injury. Over the last several years, preventive strategies involving intravenous hydration, pharmaceutical agents and renal replacement therapies have resulted in lower rates of CI-AKI. However, due to the evolving paradigm of diagnostic and therapeutic interventions, several unanswered questions remain. This review highlights the epidemiology, pathogenesis and preventive strategies of CI-AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Mehran et al. [14]

Fig. 2

Similar content being viewed by others

References

  1. Rear R, Bell RM, Hausenloy DJ. Contrast-induced nephropathy following angiography and cardiac interventions. Heart. 2016;102:638–48.

    Article  CAS  PubMed  Google Scholar 

  2. McCullough PA, Soman SS. Contrast-induced nephropathy. Crit Care Clin. 2005;21:261–80.

    Article  PubMed  Google Scholar 

  3. Mehran R, Nikolsky E. Contrast-induced nephropathy: definition, epidemiology, and patients at risk. Kidney Int. 2006;69:S11–5.

    Article  CAS  Google Scholar 

  4. Bartels ED, Brun GC, Gammeltoft A, Gjorup PA. Acute anuria following intravenous pyelography in a patient with myelomatosis. Acta Med Scand. 1954;150:297–302.

    Article  CAS  PubMed  Google Scholar 

  5. Killmann SA, Gjorup S, Thaysen JH. Fatal acute renal failure following intravenous pyelography in a patient with multiple myeloma. Acta Med Scand. 1957;158:43–6.

    Article  CAS  PubMed  Google Scholar 

  6. Wilhelm-Leen E, Montez-Rath ME, Chertow G. Estimating the risk of radiocontrast-associated nephropathy. J Am Soc Nephrol. 2017;28:653–9.

    Article  PubMed  Google Scholar 

  7. Caspi O, Habib M, Cohen Y, Kerner A, Roguin A, Abergel E, et al. Acute kidney injury after primary angioplasty: is contrast-induced nephropathy the culprit? J Am Heart Assoc. 2017;6(6):e005715.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hinson JS, Ehmann MR, Fine DM, Fishman EK, Toerper MF, Rothman RE, et al. Risk of acute kidney injury after intravenous contrast media administration. Ann Emerg Med. 2017;69(577–86):e4.

    Google Scholar 

  9. Chertow GM, Normand SL, McNeil BJ. “Renalism”: inappropriately low rates of coronary angiography in elderly individuals with renal insufficiency. J Am Soc Nephrol. 2004;15:2462–8.

    Article  PubMed  Google Scholar 

  10. Wong JA, Goodman SG, Yan RT, Wald R, Bagnall AJ, Welsh RC, et al. Temporal management patterns and outcomes of non-ST elevation acute coronary syndromes in patients with kidney dysfunction. Eur Heart J. 2009;30:549–57.

    Article  PubMed  Google Scholar 

  11. Medi C, Montalescot G, Budaj A, Fox KA, Lopez-Sendon J, FitzGerald G, et al. Reperfusion in patients with renal dysfunction after presentation with ST-segment elevation or left bundle branch block: gRACE (Global Registry of Acute Coronary Events). JACC Cardiovasc Interv. 2009;2:26–33.

    Article  PubMed  Google Scholar 

  12. KDIGO KJKIS. Section 4: contrast-induced AKI. Kidney Int Suppl. 2012;2:69–88.

    Article  Google Scholar 

  13. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120:c179–84.

    PubMed  Google Scholar 

  14. Mehran R, Dangas GD, Weisbord SD. Contrast-associated acute kidney injury. N Engl J Med. 2019;380:2146–55.

    Article  CAS  PubMed  Google Scholar 

  15. McCullough PA, Wolyn R, Rocher LL, Levin RN, O’Neill WW. Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med. 1997;103:368–75.

    Article  CAS  PubMed  Google Scholar 

  16. Rihal CS, Textor SC, Grill DE, Berger PB, Ting HH, Best PJ, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002;105:2259–64.

    Article  PubMed  Google Scholar 

  17. Tsai TT, Patel UD, Chang TI, Kennedy KF, Masoudi FA, Matheny ME, et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the NCDR Cath-PCI registry. JACC Cardiovasc Interv. 2014;7:1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Amin AP, Salisbury AC, McCullough PA, Gosch K, Spertus JA, Venkitachalam L, et al. Trends in the incidence of acute kidney injury in patients hospitalized with acute myocardial infarction. Arch Intern Med. 2012;172:246–53.

    Article  CAS  PubMed  Google Scholar 

  19. McDonald JS, McDonald RJ, Comin J, Williamson EE, Katzberg RW, Murad MH, et al. Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis. Radiology. 2013;267:119–28.

    Article  PubMed  Google Scholar 

  20. Weisbord SD, Mor MK, Resnick AL, Hartwig KC, Sonel AF, Fine MJ, et al. Prevention, incidence, and outcomes of contrast-induced acute kidney injury. Arch Intern Med. 2008;168:1325–32.

    Article  PubMed  Google Scholar 

  21. Heyman SN, Clark BA, Kaiser N, Spokes K, Rosen S, Brezis M, et al. Radiocontrast agents induce endothelin release in vivo and in vitro. J Am Soc Nephrol. 1992;3:58–65.

    CAS  PubMed  Google Scholar 

  22. Heyman SN, Rosen S, Brezis M. Radiocontrast nephropathy: a paradigm for the synergism between toxic and hypoxic insults in the kidney. Exp Nephrol. 1994;2:153–7.

    CAS  PubMed  Google Scholar 

  23. Azzalini L, Spagnoli V, Ly HQ. Contrast-induced nephropathy: from pathophysiology to preventive strategies. Can J Cardiol. 2016;32:247–55.

    Article  PubMed  Google Scholar 

  24. McCullough PA, Choi JP, Feghali GA, Schussler JM, Stoler RM, Vallabahn RC, et al. Contrast-induced acute kidney injury. J Am Coll Cardiol. 2016;68:1465–73.

    Article  PubMed  Google Scholar 

  25. Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol. 2008;3:288–96.

    Article  PubMed  Google Scholar 

  26. Ando G, Cortese B, Russo F, Rothenbhler M, Frigoli E, Gargiulo G, et al. Acute kidney injury after radial or femoral access for invasive acute coronary syndrome management AKI-MATRIX. J Am Coll Cardiol. 2017;69:2592–603.

    Article  Google Scholar 

  27. Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44:1393–9.

    PubMed  Google Scholar 

  28. Sgura FA, Bertelli L, Monopoli D, Leuzzi C, Guerri E, Spartà I, et al. Mehran contrast-induced nephropathy risk score predicts short-and long-term clinical outcomes in patients with ST-elevation—myocardial infarction. Circ Cardiovasc Interv. 2010;3:491–8.

    Article  PubMed  Google Scholar 

  29. McCullough PA, Adam A, Becker CR, Davidson C, Lameire N, Stacul F, et al. Risk prediction of contrast-induced nephropathy. Am J Cardiol. 2006;98:27K–36K.

    Article  PubMed  Google Scholar 

  30. Rudnick MR, Goldfarb S, Wexler L, Ludbrook PA, Murphy MJ, Halpern EF, et al. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The Iohexol Cooperative Study. Kidney Int. 1995;47:254–61.

    Article  CAS  PubMed  Google Scholar 

  31. Gurm HS, Seth M, Kooiman J, Share D. A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention. J Am Coll Cardiol. 2013;61:2242–8.

    Article  PubMed  Google Scholar 

  32. Bartholomew BA, Harjai KJ, Dukkipati S, Boura JA, Yerkey MW, Glazier S, et al. Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am J Cardiol. 2004;93:1515–9.

    Article  PubMed  Google Scholar 

  33. Levy EM, Viscoli CM, Horwitz RI. The effect of acute renal failure on mortality. A cohort analysis. JAMA. 1996;275:1489–94.

    Article  CAS  PubMed  Google Scholar 

  34. James MT, Ghali WA, Tonelli M, Faris P, Knudtson ML, Pannu N, et al. Acute kidney injury following coronary angiography is associated with a long-term decline in kidney function. Kidney Int. 2010;78:803–9.

    Article  PubMed  Google Scholar 

  35. Lassnigg A, Schmidlin D, Mouhieddine M, Bachmann LM, Druml W, Bauer P, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15:1597–605.

    Article  CAS  PubMed  Google Scholar 

  36. Nijssen EC, Rennenberg RJ, Nelemans PJ, Essers BA, Janssen MM, Vermeeren MA, et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389:1312–22.

    Article  PubMed  Google Scholar 

  37. Timal RJ, Kooiman J, Sijpkens YWJ, de Vries JPM, Verberk-Jonkers I, Brulez HFH, et al. Effect of no prehydration vs sodium bicarbonate prehydration prior to contrast-enhanced computed tomography in the prevention of postcontrast acute kidney injury in adults with chronic kidney disease: the Kompas randomized clinical trial. JAMA Intern Med. 2020;2:45. https://doi.org/10.1001/jamainternmed.2019.7428.

    Article  CAS  Google Scholar 

  38. Trivedi HS, Moore H, Nasr S, Aggarwal K, Agrawal A, Goel P, et al. A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron Clin Pract. 2003;93:C29–34.

    Article  CAS  PubMed  Google Scholar 

  39. Mueller C, Buerkle G, Buettner HJ, Petersen J, Perruchoud AP, Eriksson U, et al. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty [see comments]. Arch Intern Med. 2002;162:329–36.

    Article  CAS  PubMed  Google Scholar 

  40. Brar SS, Aharonian V, Mansukhani P, Moore N, Shen AY, Jorgensen M, et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet. 2014;383:1814–23.

    Article  PubMed  Google Scholar 

  41. Qian G, Fu Z, Guo J, Cao F, Chen Y. Prevention of contrast-induced nephropathy by central venous pressure-guided fluid administration in chronic kidney disease and congestive heart failure patients. JACC Cardiovasc Interv. 2016;9:89–96.

    Article  PubMed  Google Scholar 

  42. Maioli M, Toso A, Leoncini M, Musilli N, Grippo G, Ronco C, et al. Bioimpedance-guided hydration for the prevention of contrast-induced kidney injury: the HYDRA study. J Am Coll Cardiol. 2018;71:2880–9.

    Article  PubMed  Google Scholar 

  43. Briguori C, Visconti G, Focaccio A, Airoldi F, Valgimigli M, Sangiorgi GM, et al. Renal Insufficiency After Contrast Media Administration Trial II (REMEDIAL II) RenalGuard System in high-risk patients for contrast-induced acute kidney injury. Circulation. 2011;124:1260–9.

    Article  CAS  PubMed  Google Scholar 

  44. Briguori C, D’Amore C, De Micco F, Signore N, Esposito G, Napolitano G, et al. Renal insufficiency following contrast media administration trial III: urine flow rate-guided versus left-ventricular end-diastolic pressure-guided hydration in high-risk patients for contrast-induced acute kidney injury. Rationale and design. Catheter Cardiovasc Interv. 2019. https://doi.org/10.1002/ccd.28386.

    Google Scholar 

  45. Adolph E, Holdt-Lehmann B, Chatterjee T, Paschka S, Prott A, Schneider H, et al. Renal Insufficiency Following Radiocontrast Exposure Trial (REINFORCE): a randomized comparison of sodium bicarbonate versus sodium chloride hydration for the prevention of contrast-induced nephropathy. Coron Artery Dis. 2008;19:413–9.

    PubMed  Google Scholar 

  46. Brar SS, Shen AY, Jorgensen MB, Kotlewski A, Aharonian VJ, Desai N, et al. Sodium bicarbonate vs sodium chloride for the prevention of contrast medium-induced nephropathy in patients undergoing coronary angiography: a randomized trial. JAMA. 2008;300:1038–46.

    Article  CAS  PubMed  Google Scholar 

  47. Brar SS, Hiremath S, Dangas G, Mehran R, Brar SK, Leon MB. Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4:1584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weisbord SD, Gallagher M, Kaufman J, Cass A, Parikh CR, Chertow GM, et al. Prevention of contrast-induced AKI: a review of published trials and the design of the prevention of serious adverse events following angiography (PRESERVE) trial. Clin J Am Soc Nephrol. 2013;8:1618–31.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med. 2018;378:603–14.

    Article  CAS  PubMed  Google Scholar 

  50. Rosner MH. Prevention of contrast-associated acute kidney injury. Mass Med Soc. 2018;378:671–2.

    Google Scholar 

  51. Authors/Task Force M, Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, et al. ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;2014(35):2541–619.

    Google Scholar 

  52. Jain MK, Ridker PM. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005;4:977–87.

    Article  CAS  PubMed  Google Scholar 

  53. Shishehbor MH, Brennan ML, Aviles RJ, Fu XM, Penn MS, Sprecher DL, et al. Statins promote potent systemic antioxidant effects through specific inflammatory pathways. Circulation. 2003;108:426–31.

    Article  CAS  PubMed  Google Scholar 

  54. Jo SH, Koo BK, Park JS, Kang HJ, Cho YS, Kim YJ, et al. Prevention of radiocontrast medium-induced nephropathy using short-term high-dose simvastatin in patients with renal insufficiency undergoing coronary angiography (PROMISS) trial—a randomized controlled study. Am Heart J. 2008;155(499):e1–8.

    Google Scholar 

  55. Leoncini M, Toso A, Maioli M, Tropeano F, Badia T, Villani S, et al. Early high-dose rosuvastatin and cardioprotection in the protective effect of rosuvastatin and antiplatelet therapy on contrast-induced acute kidney injury and myocardial damage in patients with acute coronary syndrome (PRATO-ACS) study. Am Heart J. 2014;168:792–7.

    Article  CAS  PubMed  Google Scholar 

  56. Ukaigwe A, Karmacharya P, Mahmood M, Pathak R, Aryal MR, Jalota L, et al. Meta-analysis on efficacy of statins for prevention of contrast-induced acute kidney injury in patients undergoing coronary angiography. Am J Cardiol. 2014;114:1295–302.

    Article  CAS  PubMed  Google Scholar 

  57. Han Y, Zhu G, Han L, Hou F, Huang W, Liu H, et al. Short-term rosuvastatin therapy for prevention of contrast-induced acute kidney injury in patients with diabetes and chronic kidney disease. J Am Coll Cardiol. 2014;63:62–70.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang T, Shen LH, Hu LH, He B. Statins for the prevention of contrast-induced nephropathy: a systematic review and meta-analysis. Am J Nephrol. 2011;33:344–51.

    Article  PubMed  CAS  Google Scholar 

  59. Kandula P, Shah R, Singh N, Markwell SJ, Bhensdadia N, Navaneethan SD. Statins for prevention of contrast-induced nephropathy in patients undergoing non-emergent percutaneous coronary intervention. Nephrology (Carlton). 2010;15:165–70.

    Article  CAS  Google Scholar 

  60. Mariani J Jr, Guedes C, Soares P, Zalc S, Campos CM, Lopes AC, et al. Intravascular ultrasound guidance to minimize the use of iodine contrast in percutaneous coronary intervention: the MOZART (Minimizing cOntrast utiliZation With IVUS Guidance in coRonary angioplasTy) randomized controlled trial. JACC Cardiovasc Interv. 2014;7:1287–93.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Agostoni P, Biondi-Zoccai GG, de Benedictis ML, Rigattieri S, Turri M, Anselmi M, et al. Radial versus femoral approach for percutaneous coronary diagnostic and interventional procedures; systematic overview and meta-analysis of randomized trials. J Am Coll Cardiol. 2004;44:349–56.

    Article  PubMed  Google Scholar 

  62. Mann T, Cubeddu G, Bowen J, Schneider JE, Arrowood M, Newman WN, et al. Stenting in acute coronary syndromes: a comparison of radial versus femoral access sites. J Am Coll Cardiol. 1998;32:572–6.

    Article  CAS  PubMed  Google Scholar 

  63. Ando G, Costa F, Trio O, Oreto G, Valgimigli M. Impact of vascular access on acute kidney injury after percutaneous coronary intervention. Cardiovasc Revasc Med. 2016;17:333–8.

    Article  PubMed  Google Scholar 

  64. Aragon J, Lee MS, Kar S, Makkar RRJC, Interventions c. Percutaneous left ventricular assist device: “TandemHeart” for high-risk coronary intervention. Catheter Cardiovasc Interv. 2005;65:346–52.

    Article  PubMed  Google Scholar 

  65. Cohen MG, Matthews R, Maini B, Dixon S, Vetrovec G, Wohns D, et al. Percutaneous left ventricular assist device for high-risk percutaneous coronary interventions: real-world versus clinical trial experience. Am Heart J. 2015;170:872–9.

    Article  PubMed  Google Scholar 

  66. Burzotta F, Trani C, Doshi SN, Townend J, van Geuns RJ, Hunziker P, et al. Impella ventricular support in clinical practice: collaborative viewpoint from a European expert user group. Int J Cardiol. 2015;201:684–91.

    Article  PubMed  Google Scholar 

  67. Sauren LD, Accord RE, Hamzeh K, De Jong M, Van Der Nagel T, Van Der Veen FH, et al. Combined impella and intra-aortic balloon pump support to improve both ventricular unloading and coronary blood flow for myocardial recovery: an experimental study. Artif Org. 2007;31:839–42.

    Article  Google Scholar 

  68. Dixon SR, Henriques JP, Mauri L, Sjauw K, Civitello A, Kar B, et al. A prospective feasibility trial investigating the use of the Impella 2.5 system in patients undergoing high-risk percutaneous coronary intervention (The PROTECT I Trial): initial US experience. JACC Cardiovasc Interv. 2009;2:91–6.

    Article  PubMed  Google Scholar 

  69. O’Neill WW, Kleiman NS, Moses J, Henriques JP, Dixon S, Massaro J, et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: the PROTECT II study. Circulation. 2012;126:1717–27.

    Article  PubMed  Google Scholar 

  70. O’Neill WW, Schreiber T, Wohns DH, Rihal C, Naidu SS, Civitello AB, et al. The current use of Impella 2.5 in acute myocardial infarction complicated by cardiogenic shock: results from the USpella Registry. J Interv Cardiol. 2014;27:1–11.

    Article  PubMed  Google Scholar 

  71. Dangas GD, Kini AS, Sharma SK, Henriques JP, Claessen BE, Dixon SR, et al. Impact of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump on prognostically important clinical outcomes in patients undergoing high-risk percutaneous coronary intervention (from the PROTECT II randomized trial). Am J Cardiol. 2014;113:222–8.

    Article  PubMed  Google Scholar 

  72. Flaherty MP, Pant S, Patel SV, Kilgore T, Dassanayaka S, Loughran JH, et al. Hemodynamic support with a microaxial percutaneous left ventricular assist device (Impella) protects against acute kidney injury in patients undergoing high-risk percutaneous coronary intervention. Circ Res. 2017;120:692–700.

    Article  CAS  PubMed  Google Scholar 

  73. Dhruva SS, Ross JS, Mortazavi BJ, Hurley NC, Krumholz HM, Curtis JP, et al. Association of use of an intravascular microaxial left ventricular assist device vs intra-aortic balloon pump with in-hospital mortality and major bleeding among patients with acute myocardial infarction complicated by cardiogenic shock. JAMA. 2020;323(8):734–45.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxana Mehran.

Ethics declarations

Conflict of interest

Dr. Mehran reports receiving consulting fees from Abbott Vascular, Boston Scientific, Medscape/WebMD, Siemens Medical Solutions, Phillips/Volcano/Spectranetics, Roviant Sciences, Sanofi Italy, Bracco Group, Janssen, and AstraZeneca, grant support, paid to her institution, from Bayer, CSL Behring, DSI, Medtronic, Novartis Pharmaceuticals, OrbusNeich, Osprey Medical, PLC/RenalGuard, and Abbott Vascular, grant support and advisory board fees, paid to her institution, from BMS, fees for serving on a data and safety monitoring board from Watermark Research Funding, advisory fees and lecture fees from Medintelligence (Janssen), and lecture fees from Bayer. All other authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandiramani, R., Cao, D., Nicolas, J. et al. Contrast-induced acute kidney injury. Cardiovasc Interv and Ther 35, 209–217 (2020). https://doi.org/10.1007/s12928-020-00660-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12928-020-00660-8

Keywords

Navigation