Skip to main content
Log in

Seed Priming with Gibberellic Acid (GA3) Alleviates Salinity Induced Inhibition of Germination and Seedling Growth of Zea mays L., Pisum sativum Var. abyssinicum A. Braun and Lathyrus sativus L.

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Low seed germination, poor seedling establishment, and less crop productivity are commonly observed problems in salt-affected soils. Genetic modification of plants for creating good varieties and selection of crop plants that have best performance on saline soils are the major accomplishments done to minimize the problem. In addition, application of Gibberellic Acid (GA3) has been reported to increase germination percentage and seedling growth performance of crop plants under salt stress. The objective of the present study was therefore to investigate the effect of GA3 on germination and early seedling growth of three important crops under saline conditions. To this effect an experiment was conducted as factorial with completely randomized design with three replicates. The factors of the experiment were salinity with four levels (0, 4, 6, 8, and 12 dS/m), hormone (GA3 at 0.2 g/L versus no GA3) and the three crops (Zea mays L., Pisums sativum Var. abyssinicum A. Braun, and Lathyrus sativus L). Consequently, priming seeds of these crops with 0.2 g/L GA3 significantly improved germination percentage, reduced mean germination time, increased shoot and root length, and total weight of the crops (P < 0.05) when the salinity level is less than 8 dS/m. However, shoots of all crops performed better than the roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afzal I, Butt A, Rehman HU, Basra SMA, Afzal. A. 2012. Alleviation of salt stress infine aromatic rice by seed priming. Aust. J. Crop Sci. 6(10): 1401–1407

    CAS  Google Scholar 

  • Afzal I, Rauf S, Basra SMA, Murtazam G. 2008. Halopriming improves vigor, metabolism of reserves and ionic contents in wheat seedlings under salt stress. Plant Soil Environ. 54(9): 382–388

    Article  CAS  Google Scholar 

  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram N. 2012. Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of Mustard (Brassica juncea L.). Afr. J. Biotechnol. 11: 2694–2703

    CAS  Google Scholar 

  • Amal ME, Heba AH, Mohamed I. 2014. The effect of exogenous Gibberellic Acid on two salt stressed barley cultivars. Eur. Sci. J. 10 (6): 288–245

    Google Scholar 

  • Chutipaijit S, Cha-um S, Sompornpailin K. 2011. High contents of proline and anthocyanin increase protective response to salinity in Oryza sativa L. Aust. J. Crop Sci. 5(10):1191–1198

    CAS  Google Scholar 

  • Dantas B, De Sa Ribeiro L, Aragao CA. 2007. Germination, initial growth and cotyledon protein content of bean cultivars under salinity stress. Rev. Bras. De Sementes 29(2): 106–110

    Article  Google Scholar 

  • Duan J, Li J, Guo S, Kang Y. 2008. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinitytolerance. J. Plant Physiol. 165(15): 1620–1635

    Article  PubMed  CAS  Google Scholar 

  • Elouaer MA, Hannachi C. 2012. Seed priming to improve germination and seedling growth of safflower (Carthamus tinctorius) under salt stress. Euras. J. Biol. Sci. 6: 76–84

    Article  CAS  Google Scholar 

  • FAO. 1999. Integrated soil management for sustainable agriculture and food security in southern and East Africa. Proceedings of the Expert Consultation, Zimbabwe, ftp://ftp.fao.org

  • Farooq M, Basra SMA, Wahid A, Khaliq A, Kobayashi N. 2010. Rice seed invigoration. In Organic Farming, Pest Control and Remediation of Soil Pollutants, Springer, the Netherlands, www.banglajol.ifo/index.php

    Google Scholar 

  • Fuller MP, Hamza JH, Rihan HZ, Al-Issawi M. 2012. Germination of primed seed under NaCl stress in wheat. International Scholarly Research Notices, https://dx.doi.org/10.5402/2012/167804

    Google Scholar 

  • Ghodrat V, Rousta MJ. 2012. Effect of salinity and priming with GA3 on the germination and growth of corn (Zea mays L.) under saline conditions. Int. J. Agric. Crop Sci. 4(13): 882–885

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M. 2013. Plant Response to Salt Stress and Role of Exogenous Protectants to Mitigate Salt-Induced Damages. In Ahmad P, Azoozm MM, Prasad MNV, Eds, Ecophysiology and Response of Plants under Salt Stress Springer, New York. https://doi.org/searchworks.stanford.edu

    Google Scholar 

  • Iqbal M, Ashraf M. 2013. Gibberellic Acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ. Exper. Bot. 86: 76–85

    Article  CAS  Google Scholar 

  • Kandil AAE, Sharief AE, Ahmed SR. 2012. Germination and seedling growth of some chickpea cultivars (Cicer arietinum L.) under salinity stress. J. Basic Appl. Sci. 8(2): 561–571

    CAS  Google Scholar 

  • Khajeh HM, Powell AA, Bimgham IJ. 2003. The interaction between salinity stress and seed vigor during germination of soybean seeds. Seed Sci. Technol. 31(3):715–725

    Article  Google Scholar 

  • Khan MA, Weber DJ. 2008. Ecophysiology of High Salinity Tolerant Plants: Tasks for Vegetation Science (1st Ed). Springer, the Netherlands www.springer.com/cda/content/document

    Google Scholar 

  • Maxwell K, Johnson GN. 2000. Chlorophyll Fluorescence: a practical guide. J. of Exp. Bot. 51(345): 659–668

    Article  CAS  Google Scholar 

  • Miransari M, Smith DL. 2014. Plant hormones and seed germination. Environ. Exp. Bot. 99: 110–121

    Article  CAS  Google Scholar 

  • Munns R. 2002. Salinity, growth and phytohormones. In: A Lauchli, U Luttge, U eds, Salinity: environment, plants and molecules. The Netherlands, Kluwer. https://doi.org/books.google.com

    Google Scholar 

  • Nawaz J, Hussien M, Jabar A, Nadeem GA, Sajid M, Subtain M, Shabir I. 2013. Seed priming technique. Int. J. Agric. Crop Sci. 6(20): 1373–1381 www.ijagcs.com

    Google Scholar 

  • Othman Y, Al-Karaki G, Al-Tawaha AR, Al-Horani A. 2007. Variation in germination and ion uptake in barley genotypes under salinity conditions. World J. Agric. Sci. 2: 11–15

    Google Scholar 

  • Parida AK, Das, AB, Mohanty P. 2004. Investigations on the antioxidative defense responses to NaCl stress in a Mangrove, Bruguiera parviflora: Differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regul. 42(3): 213–226

    Article  CAS  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramirez I, Pena-Cortes H, Taleisnik E, Machad-domenech E, Abdala G. 2003. Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul. 41(2): 149–158

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E. 2002. Plant Physiology, 3rd Ed. Sinauer Associates, Inc. Massachusetts. https://doi.org/www.abebooks.co

    Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK. 2010. High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J. Exp. Bot. 61(15): 4449–4459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tesfamariam G. 1993. Degradation problems of irrigated agriculture: Proceedings of the Second Conference of ESSS, 23–24 September, Addis Ababa, Ethiopia

    Google Scholar 

  • Tsegay BA, Gebresillasie B. 2014. The effect of salinity (NaCl) on germination and seedling growth of Lathyrus sativus and Pisum sativum var. abyssinicum. Afr. J Plant Sci. 8(5): 225–231

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR. 2001. Chloride in soils and its uptake and movement within the plant. Ann. Bot. 88(6): 967–988

    Article  CAS  Google Scholar 

  • Yohannes G, Abraha B. 2013. The role of seed priming in improving seed germination and seedling growth of maize (Zea mays L.) under salt stress at laboratory conditions. Afr. J. Biotechnol. 12(46): 6484–6490

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berhanu Abraha Tsegay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsegay, B.A., Andargie, M. Seed Priming with Gibberellic Acid (GA3) Alleviates Salinity Induced Inhibition of Germination and Seedling Growth of Zea mays L., Pisum sativum Var. abyssinicum A. Braun and Lathyrus sativus L.. J. Crop Sci. Biotechnol. 21, 261–267 (2018). https://doi.org/10.1007/s12892-018-0043-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-018-0043-0

Key words

Navigation