Skip to main content
Log in

Comparative Study on the Zinc and Cadmium Tolerance Potential of Twelve Prominent Rice Cultivars

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Heavy metal pollution being a potential threat to agriculture raising rice cultivars with heavy metal tolerance is a promising strategy for remediation of heavy metal polluted agricultural lands. We present here a comprehensive study describing the differences in physiological and biochemical responses of 12 prominent high-yielding rice cultivars to increasing ZnSO4 concentrations (0, 2, 6, and 10 mM) and CdCl2 concentrations (0, 1, 2, and 3 mM). Even though Zinc (Zn) is an essential element required for the normal growth and development process of plants, a higher concentration of Zn has an antagonistic effect. Cadmium (Cd) is detrimental to plants and is found in soils contaminated with heavy metals. The effects of Zn and Cd on rice seedlings were a reduction in shoot length, greater chlorophyll and carotenoid loss, higher malondialdehyde content, proline accumulation, and an increased level of sugar and amino acids when treated with CdCl2 and ZnSO4. The CdCl2 and ZnSO4 stress-induced biochemical changes displayed major differences in the 12 rice cultivars in terms of tolerance to Zn and Cd toxicity. Our data provides evidence that the cultivar Varsha showed the highest tolerance and cultivar JY showed the least tolerance towards Cd and Zn toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acquaah G. 2007. Principles of plant genetic and breeding. Blackwell, Oxford, UK

    Google Scholar 

  • Ahmad P, Latef AAA, Hashem A, AbdAllah EF, Gucel S, Tran LSP. 2016. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front. Plant Sci. 7: 347

    PubMed  PubMed Central  Google Scholar 

  • Ait NA, Ater M, Sunahara GI, Robidoux PY. 2004. Phytotoxicity and bioaccumulation of copper and chromium using barley (Hordeum vulgare L.) in spiked artificial and natural forest soils. Ecotoxicol. Environ. Saf. 57: 363–374

    Article  CAS  Google Scholar 

  • Al Khateeb W, Al-Qwasemeh H. 2014. Cadmium, copper and zinc toxicity effects on growth, proline content and genetic stability of Solanum nigrum L., a crop wild relative for tomato; comparative study. Physiol. Mol. Biol. Plants. 20: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Aravind P, Prasad MNV. 2005. Zinc mediated protection to the conformation of carbonic anhydrase in cadmium exposed Ceratophyllum demersum L. Plant Sci. 169: 245–254

    Article  CAS  Google Scholar 

  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiol. 24: 1–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashraf M, Foolad M. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 59: 206–216

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare IK. 1973. Rapid determination of free proline for water studies. Plant Soil. 39: 205–207

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. 2007. Zinc in plants. New Phytol. 173: 677–702

    Article  PubMed  CAS  Google Scholar 

  • Cao D, Xie P, Deng J, Zhang H, Ma R, Liu C, Liu R, Liang Y, Li H, Shi X. 2015. Effects of Cu2+ and Zn2+ on growth and physiological characteristics of green algae, Cladophora. Environ. Sci. Pollut. Res. 22: 16535–16541

    Article  CAS  Google Scholar 

  • Chandra R, Bhargava RN, Yadav S, Mohan D. 2009. Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica compestries L. ) irrigated with distillery and tannery effluent. J. Haz. Mater. 162: 1514–1521

    Article  CAS  Google Scholar 

  • Charest C, Pan T. 1990. Cold acclimation of wheat (Triticum aestivum L.): Properties of enzymes involved in proline metabolism. Physiol. Plant. 80: 159–168

    Article  CAS  Google Scholar 

  • Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J. 2017. Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul. 81: 253–264

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 26: 350–356

    Article  Google Scholar 

  • Filippou P, Bouchagier P, Skotti E, Fotopoulos V. 2014. Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environ. Exp. Bot. 97: 1–10

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909–930

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Meng L, Zhang Y-N, Mao P-C, Tian X-X, Li S-S, Zhang L. 2017. Antioxidative systems, metal ion homeostasis and cadmium distribution in Iris lactea exposed to cadmium stress. Ecotoxicol. Environ. Saf. 139: 50–55

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts. I-Kinetics and stoichemistry of fatty acid peroxidation. Arch Biochem. Biophys. 125: 189–198

    Article  PubMed  CAS  Google Scholar 

  • Hilal M, Parrado MF, Rosa M, Gallardo M, Orce L, Massa ED, Gonzalez JA, Prado FE. 2004. Epidermal lignin deposition in quinoa cotyledons in response to UV-B radiation. Photochem. Photobiol. 79: 205–210

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Pan Xiao-Dong, Wu Ping-Gu, Han Jian-Long, Chen Q. 2013. Health risk assessment of heavy metals in rice to the population in Zhejiang, China. PLOS One 8: 1–6

    CAS  Google Scholar 

  • Jisha KC, Puthur JT. 2016. Seed priming with Beta-Amino Butyric acid improves abiotic stress tolerance in rice seedlings. Rice Sci. 23: 242–254

    Article  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S. 2007. Antioxidative response of Lemna polyrhiza L. to cadmium stress. J. Environ. Biol. 28: 583–589

    PubMed  CAS  Google Scholar 

  • Jung Ha-il, Lee Bok-Rye, Chae Mi-Jin, Kong Myung-Suk, Lee Chang-Hoon, Kang Seong-Soo, Kim Yoo-Hak. 2017. Sulfur alleviates cadmium toxicity in rice (Oryza sativa L.) seedlings by altering antioxidant levels. J. Crop Sci. Biotech. 20: 213–220

    Article  Google Scholar 

  • Khan K, Lu Y, Khan H, Ishtiaq M, Khan S, Waqas M, Wei L, Wang T. 2013. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food Chem. Toxicol. 58: 449–458

    Article  PubMed  CAS  Google Scholar 

  • Krzeslowska M. 2011. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol. Plant. 33: 35–51

    Article  CAS  Google Scholar 

  • Lin YF, Mark GM. 2012. The molecular mechanism of zinc and cadmium stress response in plants. J. Cel. Mol. Life Sci. 69: 3167–3206

    Google Scholar 

  • Madan S, Nainawatee H, Jain R, Chowdhury J. 1995. Proline and proline metabolising enzymes in in-vitro selected NaCltolerant Brassica juncea L. under salt stress. Ann. Bot. 76: 51–57

    Article  CAS  Google Scholar 

  • Mahmood SA, Saeed HZ, Athar M. 2005. Germination and seedling growth of corn (Zea mays L.) under varying levels of copper and zinc. Int. J. Environ. Sci. Tech. 2: 269–274

    Article  CAS  Google Scholar 

  • Moore S, Stein WH. 1948. Photometric ninhydrin method for use in chromatography of amino acids. J. Biol. Chem. 176: 367–388

    PubMed  CAS  Google Scholar 

  • Nanda R, Agrawal V. 2016. Elucidation of zinc and copper induced oxidative stress, DNA damage and activation of defence system during seed germination in Cassia angustifolia Vahl. Environ. Exp. Bot. 125: 31–41

    Article  CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Iqbal M, Khan R, Syeed S, Khan NA. 2012. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am. J. Plant Sci. 3: 1476–1489

    Article  CAS  Google Scholar 

  • Nguyen NV, Ferrero A. 2006. Meeting the challenges of global rice production. Paddy Water Environ. 4: 1–9

    Article  Google Scholar 

  • Otero S, Nunez-Olivera E, Martinez-Abaiqar J, Tomas R, Arroniz-Crespo M, Beaucourt N. 2006. Effects of cadmium and enhanced UV radiation on the physiology and the concentration of UV-absorbing compounds of the aquatic liverwort Jungermannia exsertifolia sub sp. Cordifolia. Photochem. Photobiol. Sci. 5: 760–769

    Article  PubMed  CAS  Google Scholar 

  • Ouni Y, Mateos-Naranjoc E, Abdelly C, Lakhdar A. 2016. Interactive effect of salinity and zinc stress on growth and photosynthetic responses of the perennial grass, Polypogon monspeliensis. Ecol. Eng. 95: 171–179

    Article  Google Scholar 

  • Pandey S, Gupta K, Mukharjee AK. 2007. Impact of cadmium and lead on Catharanthus roseus-A phytoremediation study. J. Environ. Biol. 28: 655–662

    PubMed  CAS  Google Scholar 

  • Peng D, Shafi M, Wang Y, Li S, Yan W, Chen J, Ye Z, Liu D. 2015. Effect of Zn stresses on physiology, growth, Zn accumulation, and chlorophyll of Phyllostachys pubescens. Environ. Sci. Pollut. Res. 22: 14983–14992

    Article  CAS  Google Scholar 

  • Per TS, Khan S, Asgher M, Bano B, Khan NA. 2016. Photosynthetic and growth responses of two mustard cultivars differing in phytocystatin activity under cadmium stress. Photosynthetica 54: 491–501

    Article  CAS  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A. 2002. Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162

    Article  PubMed  CAS  Google Scholar 

  • Rai V. 2002. Role of amino acids in plant responses to stresses. Biol. Planta. 45: 481–487

    Article  CAS  Google Scholar 

  • Ramos MC, Lopez-Acevedo M. 2004. Zinc levels in vineyard soils from the Alt Penede‘s-Anoia region (NES pain) after compost application. Adv. Environ. Res. 8: 687–696

    Article  CAS  Google Scholar 

  • Rosa M, Hilal M, Gonza´lez JA, Prado FE. 2009. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiol. Biochem. 47: 300–307

    Article  PubMed  CAS  Google Scholar 

  • Sebastian A, Prasad MNV. 2013. Cadmium minimization in rice. A review. Agron. Sustain. Dev. 34(1): 155–173

    Article  CAS  Google Scholar 

  • Shackira AM, Puthur JT, Salim EN. 2017. Acanthus ilicifolius L. a promising candidate for phytostabilization of zinc. Environ. Monit. Assess. 189: 282

    Article  PubMed  CAS  Google Scholar 

  • Shackira AM, Puthur JT. 2017. Enhanced phytostabilization of cadmium by a halophyte - Acanthus ilicifolius L. Int. J. Phytoremed. 19: 319–326

    Article  CAS  Google Scholar 

  • Shackira AM. 2017. Evaluation of heavy metal phytoremediation potential and elucidation of underlying phytotechnology in a halophyte, Acanthus ilicifolius L. Ph.D. Thesis. University of Calicut. Malappuram

    Google Scholar 

  • Sharma SS, Dietz KJ. 2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot. 57: 711–726

    Article  PubMed  CAS  Google Scholar 

  • Song A, Li P, Li Z, Fan F, Nikolic M, Liang Y. 2011. The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil 344: 319–333

    Article  CAS  Google Scholar 

  • Subba P, Mukhopadhyay M, Mahato SK, Bhutia KD, Mondal TK, Ghosh SK. 2014. Zinc stress induces physiological, ultrastructural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings. Physiol. Mol. Biol. Plants 20: 461–473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tariq JM, Sohail AM, Kashif T, Chaudhary J, Hassan, Qasim A, Eva S, Sylvia L. 2017. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea Mays L.) cultivars. Ecotoxicol. Environ. Saf. 141: 216–225

    Article  CAS  Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Panda SK. 2012. Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol. Biochem. 53: 33–39

    Article  PubMed  CAS  Google Scholar 

  • Tiecher TL, Tiecher T, Cerettaa CA, Ferreiraa PAA, Nicolosoc FT, Sorianid HH, Contia LD, Kulmanna MSS, Schneidera RO, Brunetto G. 2017. Tolerance and translocation of heavy metals in young grapevine (Vitis vinifera) grown in sandy acidic soil with interaction of high doses of copper and zinc.Sci. Hortic. 222: 203–212

    Article  CAS  Google Scholar 

  • Tkalec M, Stefanic´PP, Cvjetko P, Sikic´ S, Pavlica M, Balen B. 2014. The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLOS One 9: 1–13

    Article  CAS  Google Scholar 

  • Tsikas D. 2017. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 524: 13–30

    Article  PubMed  CAS  Google Scholar 

  • Ulusu Y, Öztürk L, Elmastas M. 2017. Antioxidant capacity and cadmium accumulation in parsley seedlings exposed to cadmium stress. Russ. J. Plant Physiol. 64: 883–888

    Article  CAS  Google Scholar 

  • Vassilev N, Toro M, Vassileva M, Azcón R, Barea JM. 1997. Rock phosphate solubilization by immobilized cells of Enterobacter sp. in fermentation and soil conditions. Bioresour. Technol. 61: 29–32

    Article  CAS  Google Scholar 

  • Xu X, Liu C, Zhao X, Li R, Deng W. 2014. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.). Bull. Environ. Contam. Toxicol. 93: 618–624

    Article  PubMed  CAS  Google Scholar 

  • Yu F, Liu K, Li M, Zhou Z, Deng H, Chen B. 2013. Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oryza Sativa L.). Int. J. Phytoremed. 15: 513–523

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos Thomas Puthur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinisha, A.K., Puthur, J.T. Comparative Study on the Zinc and Cadmium Tolerance Potential of Twelve Prominent Rice Cultivars. J. Crop Sci. Biotechnol. 21, 201–210 (2018). https://doi.org/10.1007/s12892-018-0042-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-018-0042-0

Key words

Navigation