Skip to main content
Log in

Acanthus ilicifolius L. a promising candidate for phytostabilization of zinc

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The potential of a halophyte species—Acanthus ilicifolius L.—to phytostabilize zinc (Zn) grown under hydroponics culture conditions was critically evaluated in this study. The propagules after treating with ZnSO4 (4 mM) were analysed for the bioaccumulation pattern, translocation rate of Zn to the shoot, effects of Zn accumulation on organic solutes and the antioxidant defence system. It was found that most of the Zn absorbed by the plant was retained in the root (47%) and only a small portion was transported to stem (12%) and leaves (11%). This is further confirmed by the high BCFroot (bioconcentration factor) value (1.99) and low TFshoot/root (translocation factor) value (0.5), which indicates the increased retention of Zn in the root itself. Moreover, treatment with Zn resulted in an increased accumulation of organic solutes (proline, free amino acids and soluble sugars) and non-enzymatic antioxidants (ascorbate, glutathione and phenol) in the leaf and root tissue. Likewise, the activity of antioxidant enzymes namely superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) recorded an enhanced activity upon exposure to Zn as compared to the control plants. Thus, the increased tolerance for Zn in A. ilicifolius may be attributed to the efficient free radical scavenging mechanisms operating under excess Zn. In addition, being a high accumulator (53.7 mg of Zn) and at the same time a poor translocator of Zn to the aerial parts of the plant, A. ilicifolius can be recommended as a potential candidate for the phytostabilization of Zn in the contaminated wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allan, J. E. (1969). The preparation of agricultural samples for analysis by atomic absorption spectrometry. (pp 12–69) Varian Techtron Bulletin (SIS Edn.).

  • Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601–639.

    Article  CAS  Google Scholar 

  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycinebetaine and proline in improving plant abiotic stress tolerance. Environmental and Experimental Botany, 59, 206–216.

    Article  CAS  Google Scholar 

  • Aslund, F., & Beckwith, J. (1999). Bridge of troubled waters: sensing stress by disulfide bond formation. Cell, 96, 751–753.

    Article  CAS  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. K. (1973). Rapid determination of free proline for water studies. Plant and Soil, 39, 205.

    Article  CAS  Google Scholar 

  • Berti, W. R., & Cunningham, S. D. (2000). Phytostabilization of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean up the environment (pp. 71–88). New York: Wiley.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Cakmak, I. (2000). Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist, 146, 185–205.

    Article  CAS  Google Scholar 

  • Caregnato, F. F., Koller, C. E., MacFarlane, G. R., & Moreira, J. C. F. (2008). The glutathione antioxidant system as a biomarker suite for the assessment of heavy metal exposure and effect in the grey mangrove, Avicennia marina (Forsk.) Vierh. Marine Pollution Bulletin, 56, 1119–1127.

    Article  CAS  Google Scholar 

  • Chan, G., Ye, Z., & Wong, M. (2003). Comparison of four Sesbania species to remediate Pb/Zn and Cu mine tailings. Environmental Management, 32, 246–251.

    Article  Google Scholar 

  • Chen, J. X., & Wang, X. F. (2002). Guide to plant physiological experiments (pp. 123–127). Guangzhou: South China University of Technology Press.

    Google Scholar 

  • Chiu, C. Y., Hsiu, F. S., Chen, S. S., & Chou, C. H. (1995). Reduced toxicity of cu and Zn to mangrove seedlings in saline environments. Botanical Bulletin-Academia Sinica, 36, 19–24.

    CAS  Google Scholar 

  • Clemente, R., Walker, D. J., Pardo, T., Martínez-Fernández, D., & Bernal, M. P. (2012). The use of a halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions. Journal of Hazardous Materials, 223, 63–71.

    Article  Google Scholar 

  • Díaz, J., Bernal, A., Pomar, F., & Merino, F. (2001). Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annum L.) seedlings in response to copper stress and its relation to lignifications. Plant Science, 161, 179–188.

    Article  Google Scholar 

  • Dubois, M., Gillies, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for the determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  • Epstein, E. (1972). Mineral nutrition of plants: principles and perspectives. New York: John Wiley and Sons.

    Google Scholar 

  • Ernst, W. H. O., Verkleij, J. A. C., & Schat, H. (1992). Metal tolerance in plants. Acta Botanica Neerlandica, 41, 229–248.

    Article  CAS  Google Scholar 

  • Flathman, P. E., & Lanza, G. R. (1998). Phytoremediation: current views on an emerging green technology. Journal of Soil Contamination, 7, 415–432.

    Article  Google Scholar 

  • Folin, O., & Denis, W. (1915). A calorimetric method for the determination of phenols (and phenol derivatives) in urine. Journal of Biological Chemistry, 22, 305–308.

    CAS  Google Scholar 

  • Fonseca, E. F., Baptista Neto, J. A., & Silva, C. G. (2013). Heavy metal accumulation in mangrove sediments surrounding a large waste reservoir of a local metallurgical plant, Sepetiba Bay, SE, Brazil. Environmental Earth Sciences, 70, 643–650.

    Article  CAS  Google Scholar 

  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutase in higher plants. Plant Physiology, 59, 309–314.

    Article  CAS  Google Scholar 

  • Gillespie, K. M., & Ainsworth, E. A. (2007). Measurement of reduced, oxidized and total ascorbate content in plants. Nature Protocols, 2, 871–874.

    Article  CAS  Google Scholar 

  • González-Chávez, C. A., & Carrillo-González, R. (2013). Tolerance of Chrysantemum maximum to heavy metals: The potential for its use in the revegetation of tailings heaps. Journal of Environmental Sciences, 25, 2367–2375.

    Article  Google Scholar 

  • Hayat, S., Khalique, G., Irfan, M., Wani, A. S., Tripathi, B. N., & Ahmad, A. (2012). Physiological changes induced by chromium stress in plants: an overview. Protoplasma, 249, 599–611.

    Article  CAS  Google Scholar 

  • He, B., Li, R., Chai, M., & Qiu, G. (2014). Threat of heavy metal contamination in eight mangrove plants from the Futian mangrove forest, China. Environmental Geochemistry and Health, 36, 467.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Phytoperoxidation in isolated chloroplasts. I-kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  • Hegedus, A., Erdei, S., & Horvath, G. (2001). Comparative studies of H2O detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Science, 160, 1085–1093.

    Article  CAS  Google Scholar 

  • Hu, Z., & Wenjiao, Z. (2015). Effects of zinc stress on growth and antioxidant enzyme responses of Kandelia obovata seedlings. Toxicological and Environmental Chemistry, 97, 1190–1201.

    Article  Google Scholar 

  • Hu, Y., Liu, X., Bai, J., Zeng, E. Y., & Cheng, H. (2013). Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research, 20, 6150–6159.

    Article  CAS  Google Scholar 

  • Huang, G. Y., & Wang, Y. S. (2010). Physiological and biochemical responses in the leaves of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) exposed to multiple heavy metals. Journal of Hazardous Materials, 182, 848–854.

    Article  CAS  Google Scholar 

  • Irannejad, H., & Shahbazian, N. (2004). Field crops tolerance to stress. University of Tehran Press.

  • Joonki, Y., Xinde, C., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368, 456–464.

    Article  Google Scholar 

  • Jung, C., Maeder, V., Funk, F., Frey, B., Sticher, H., & Frosserd, E. (2003). Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in cu detoxification. Plant and Soil, 252, 301–312.

    Article  CAS  Google Scholar 

  • Kachout, S. S., Mansoura, A. B., Mechergui, R., Leclerc, J. C., Rejeb, M. N., & Ouerghia, Z. (2012). Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. Journal of the Science of Food and Agriculture, 92, 336–342.

    Article  CAS  Google Scholar 

  • Kar, M., & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57, 315–319.

    Article  CAS  Google Scholar 

  • Khudsar, T., Iqbal, M., & Sairam, R. K. (2004). Zinc induced changes in morpho-physiological and biochemical parameters in Artemisia annua. Biologia Plantarum, 48, 255–260.

    Article  CAS  Google Scholar 

  • Kováčik, J., Klejdus, B., & Bačkor, M. (2009). Phenolic metabolism of Matricaria chamomilla plants exposed to nickel. Plant Physiology, 166, 1460–1464.

    Article  Google Scholar 

  • Kranner, I., Birtic, S., Anderson, K. M., & Pritchard, H. W. (2006). Glutathione half cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Radical Biology and Medicine, 40, 2155–2165.

    Article  CAS  Google Scholar 

  • Lefévre, I. (2007). Investigation of three Mediterranean plant species suspected to accumulate and tolerate high cadmium and zinc levels. PhD Thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium.

  • Lefévre, I., Correal, E., & Lutts, S. (2010). Impact of cadmium and zinc on growth and water status of Zygophyllum fabago in two contrasting metallicolous populations from SE Spain: comparison at the whole plant and tissue level. Plant Biology, 12, 883–894.

    Article  Google Scholar 

  • Liu, C. W., Chen, Y. Y., Kao, Y. H., & Maji, S. K. (2014). Bioaccumulation and translocation of arsenic in the ecosystem of the Guandu Wetland, Taiwan. Wetlands, 34, 129–140.

    Article  Google Scholar 

  • Liu, Y., Tam, N. F. Y., Yang, J. X., Pi, N., Wong, M. H., & Ye, Z. H. (2009). Mixed heavy metals tolerance and radial oxygen loss in mangrove seedlings. Marine Pollution Bulletin, 58, 1843–1849.

    Article  CAS  Google Scholar 

  • Lotmani, B., Fatarna, L., Berkani, A., Rabier, J., Prudent, P., & Laffont-Schwob, I. (2011). Algerian populations of the Mediterranean saltbush, Atriplex halimus, tolerant to high concentrations of lead, zinc, and copper for phytostabilization of heavy metalcontaminated soils. The European Journal of Plant Science and Biotechnology, 5, 20–26.

    Google Scholar 

  • MacFarlane, G. R. (2002). Leaf biochemical parameters in Avicennia marina (Forsk.) Vierh as potential biomarkers of heavy metal stress in estuarine ecosystems. Marine Pollution Bulletin, 44, 244–256.

    Article  CAS  Google Scholar 

  • MacFarlane, G. R., Pulkownik, A., & Burchett, M. D. (2003). Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.) Vierh.: biological indication potential. Environmental Pollution, 123, 139–151.

    Article  CAS  Google Scholar 

  • MacFarlane, G. R., & Burchett, M. D. (1999). Zinc distribution and excretion in the leaves of the grey mangrove, Avicennia marina (Forsk.) Vierh. Environmental and Experimental Botany, 41, 167–175.

    Article  CAS  Google Scholar 

  • MacFarlane, G. R., & Burchett, M. D. (2000). Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquatic Botany, 68, 45–59.

    Article  CAS  Google Scholar 

  • MacFarlane, G. R., & Burchett, M. D. (2002). Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Marine Environmental Research, 54, 65–84.

    Article  CAS  Google Scholar 

  • Mateos-Naranjo, E., Castellanos, E., & Perez-Martin, A. M. (2014). Zinc tolerance and accumulation in the halophytic species Juncus acutus. Environmental and Experimental Botany, 100, 114–121.

    Article  CAS  Google Scholar 

  • Mendez, M. O., Glenn, E. R., & Maier, R. M. (2007). Phytostabilization potential of quailbush for mine tailings: growth, metal accumulation, and microbial community changes. Journal of Environmental Quality, 36, 245–253.

    Article  CAS  Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environmental Health Perspectives, 116, 278–283.

    Article  CAS  Google Scholar 

  • Meng, L., Guo, Q., Mao, P., & Tian, X. (2013). Accumulation and tolerance characteristics of zinc in Agropyron cristatum plants exposed to zinc-contaminated soil. Bulletin of Environment Contamination and Toxicology, 91, 298–301.

    Article  CAS  Google Scholar 

  • Moore, S., & Stein, W. H. (1948). Photometric ninhydrin method for use in chromatography of amino acids. The Journal of Biological Chemistry, 176, 367–388.

    CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  • Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review Plant Physiology and Plant Molecular Biology, 49, 249–279.

    Article  CAS  Google Scholar 

  • Noctor, G., Arisi, A. C. M., Jouanin, L., Kunert, K. J., Rennenberg, H., & Foyer, C. H. (1998b). Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. Journal of Experimental Botany, 49, 623–647.

    CAS  Google Scholar 

  • Ogawa, K. (2005). Glutathione-associated regulation of plant growth and stress responses. Antioxidants and Redox Signalling, 7, 973–981.

    Article  CAS  Google Scholar 

  • Ozdener, Y., & Aydin, B. K. (2010). The effect of zinc on the growth and physiological and biochemical parameters in seedlings of Eruca sativa (L.) (rocket). Acta Physiologia Plantarum, 32, 469–476.

    Article  CAS  Google Scholar 

  • Pang, K. L., & Leaño, E. M. (2010). Effect of copper(II), lead(II), and zinc(II) on growth and sporulation of Halophytophthora from Taiwan mangroves. Water, Air and Soil Pollution, 213, 85–93.

    Article  Google Scholar 

  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants. Ecotoxicology and Environmental Safety, 60, 324–349.

    Article  CAS  Google Scholar 

  • Pastor, J., Gutiérrez-Ginés, M. J., & Hernández, A. J. (2015). Heavy-metal phytostabilizing potential of Agrostis castellana Boiss. & Reuter. International Journal of Phytoremediation, 17, 988–998.

    Article  CAS  Google Scholar 

  • Peng, D., Shafi, M., Wang, Y., Li, S., Yan, W., Chen, J., Ye, Z., & Liu, D. (2015). Effect of Zn stresses on physiology, growth, Zn accumulation, and chlorophyll of Phyllostachys pubescens. Environmental Science and Pollution Research, 22, 14983–14992.

    Article  CAS  Google Scholar 

  • Polle, A., Otter, T., & Seifert, F. (1994). Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.) Plant Physiology, 106, 53–60.

    Article  CAS  Google Scholar 

  • Rastgoo, L., Alemzadeh, A., Tale, A. M., Tazangi, S. E., & Eslamzadehm, T. (2014). Effects of copper, nickel and zinc on biochemical parameters and metal accumulation in gouan, Aeluropus littoralis. Plant Knowledge Journal, 3, 31–38.

    Google Scholar 

  • Sai, K. S., Mansoura, B. A., Ennajah, A., Leclerc, J. C., Ouerghi, Z., & Karray, B. N. (2015). Effects of metal toxicity on growth and pigment contents of annual halophyte (A. hortensis and A. rosea). International Journal of Environmental Research, 9, 613–620.

    Google Scholar 

  • Saiyood, S., Vangnai, A. S., Inthorn, D., & Thiravetyan, P. (2012). Treatment of total dissolved solids from plastic industrial effluent by halophyte plants. Water, Air and Soil Pollution, 223, 4865–4873.

    Article  CAS  Google Scholar 

  • Santos, D., Duarte, B., & Caçador, I. (2014). Unveiling Zn hyperaccumulation in Juncus acutus: implications on the electronic energy fluxes and on oxidative stress with emphasis on non-functional Zn-chlorophylls. Journal of Photochemistry and Photobiology B, 140, 228–239.

    Article  CAS  Google Scholar 

  • Schnoor, J. L. (2000). Phytostabilization of metals using hybrid poplar trees. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals. Plants to clean up the environment (pp. 133–150). New York: John Wiley.

    Google Scholar 

  • Shackira, A. M., & Puthur, J. T.. (2013). An assessment of heavy metal contamination in soil sediments, leaves and roots of Acanthus ilicifolius L. (pp 689–692) Proceedings of 23rd Swadeshi Science Congress.

  • Shackira, A. M., & Puthur, J. T. (2016). Enhanced phytostabilization of cadmium by a halophyte—Acanthus ilicifolius L. International Journal of Phytoremediation. doi:10.1080/15226514.2016.1225284.

  • Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57, 711–726.

    Article  CAS  Google Scholar 

  • Teisseire, H., & Vernet, G. (2000). Ascorbate and glutathione contents in duckweed, Lemna minor, as biomarkers of the stress generated by copper, folpet and diuron. Biomarkers, 5, 263–273.

    Article  CAS  Google Scholar 

  • Udechukwu, B. E., Ismail, A., Zulkifli, S. Z., & Omar, H. (2015). Distribution, mobility, and pollution assessment of Cd, Cu, Ni, Pb, Zn, and Fe in intertidal surface sediments of Sg. Puloh mangrove estuary, Malaysia. Environmental Science and Pollution Research, 22, 4242.

    Article  CAS  Google Scholar 

  • Üstün, A. S., Keleş, Y., & Öncel, I. (2000). Interactive effects of temperature and heavy metals stress on the growth and some biochemical compounds in wheat seedlings. Environmental Pollution, 107, 315–320.

    Article  Google Scholar 

  • Wójcik, M., Skórzynska-Poli, E., & Tukiendorf, A. (2006). Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regulation, 48, 145–155.

    Article  Google Scholar 

  • Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50, 775–780.

    Article  CAS  Google Scholar 

  • Wu, H., Liu, X., Zhao, J., & Yu, J. (2013). Regulation of metabolites, gene expression, and antioxidant enzymes to environmentally relevant lead and zinc in the halophyte Suaeda salsa. Journal of Plant Growth Regulation, 32, 353–361.

    Article  CAS  Google Scholar 

  • Yan, Z., & Tam, N. F. Y. (2013). Effect of lead stress on anti-oxidative enzymes and stress-related hormones in seedlings of Excoecaria agallocha Linn. Plant and Soil, 367, 327–338.

    Article  CAS  Google Scholar 

  • Yin, D., Chen, S., Chen, F., Guan, Z., & Fang, W. (2009). Morphological and physiological responses of two Chrysanthemum cultivars differing in their tolerance to waterlogging. Environmental and Experimental Botany, 67, 87–93.

    Article  CAS  Google Scholar 

  • Yoon, J., Cao, X. D., Zhou, Q. X., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368, 456–464.

    Article  CAS  Google Scholar 

  • Zhang, F., Wang, Y., Zhi-Ping, L., & Jun-De, D. (2007). Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 67, 44–50.

    Article  CAS  Google Scholar 

  • Zhang, J., Liu, J., Ouyang, Y., Liao, B., & Zhao, B. (2011). Physiological responses of mangrove Sonneratia apetala Buch-ham plant to wastewater nutrients and heavy metals. International Journal of Phytoremediation, 13, 456–464.

    Article  CAS  Google Scholar 

  • Zhou, Y. W., Zhao, B., Peng, Y. S., & Chen, G. Z. (2010). Influence of mangrove reforestation on heavy metal accumulation and speciation in intertidal sediments. Marine Pollution Bulletin, 60, 1319–1324.

    Article  CAS  Google Scholar 

  • Zhu, J. K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6, 441–445.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author is indebted to the Department of Science and Technology (DST), New Delhi, for the financial assistance through award of INSPIRE fellowship. The Centre for Water Resources Development and Management (CWRDM), Calicut, Kerala, is gratefully acknowledged for providing Atomic Absorption Facility (AAS) essential for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos T. Puthur.

Electronic supplementary material

S1

Effect of ZnSO4 on total chlorophyll, carotenoid content and RWC of Acanthus ilicifolius L. cultured in Hoagland solution. The data are the average of recordings from three independent experiments, each with a minimum of 3 replicates (i.e. n = 3 × 3). The data represent mean ± S.E. (DOCX 12 kb)

S2

Effect of different concentrations of ZnSO4 in the morphology of Acanthus ilicifolius L. cultured in Hoagland solution. (JPEG 5903 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shackira, A.M., Puthur, J.T. & Nabeesa Salim, E. Acanthus ilicifolius L. a promising candidate for phytostabilization of zinc. Environ Monit Assess 189, 282 (2017). https://doi.org/10.1007/s10661-017-6001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6001-8

Keywords

Navigation