Skip to main content
Log in

Physiological and protein profiling response to drought stress in KS141, a Korean maize inbred line

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Understanding the complex response mechanism of a crop to drought is the major step in the developing of tolerant genotypes. In our study, to investigate physiological traits and proteome dynamics, an inbred maize (Zea mays L.) line (KS141) was subjected to 10 days of water-withholding at the V5 or V6 leaf stage. The subsequent analysis of their physiological parameters revealed a decreased relative leaf water content, Fv/Fm, stomatal conductance, net CO2 assimilation rate, leaf transpiration, and water use efficiency, resulting in severe growth retardation of leaf area, stem length and width, aerial part, and root dry matter at 3 and 10 days after withholding water. However, aerial part and root dry matter were little changed during drought stress for 3 days. To understand the proteome dynamics during the 10-day drought stress in maize leaves, comparative proteome analysis was carried out between the well-watered and drought-treated leaves. Proteins were extracted using phenol extraction method from leaves with/without drought stress, and then separated by 2-DE. After 2-DE gel analyses, 14 differentially expressed protein spots were identified by MALDITOF mass spectrometry. Out of 14, eleven and three protein spots were found to be up- or down-regulated, respectively. Interestingly, stress-related proteins such as glutathione S-transferase, abscisic stress-ripening proteins, and pathogenesis-related proteins were increased by drought stress. Our study may provide molecular mechanisms and selective markers for drought tolerant maize genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bantignies B, Seguin J, Muzac I, Dedaldechamp F, Gulick P, Ibrahim R. 2000. Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mol. Biol. 42: 871–881

    Article  CAS  PubMed  Google Scholar 

  • Benešová M, Holá D, Fischer L, Jedelskc PL, Hnilika F, Wilhelmová N, Rothová O, KoCová M, Procházková D, Honnerová J, Fridrichová L, Hniliková H. 2012. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS One 7: e38017

  • Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P, Lagana A. 2008. Identification of changes in Triticum durum L. leaf proteome in response to salt stress by twodimensional electrophoresis and MALDI-TOF mass spectrometry. Anal. Bioanal. Chem. 391: 381–390

    Article  CAS  PubMed  Google Scholar 

  • Caruso G, Cavaliere C, Foglia P, Gubbiotti R, Samperi R, Laganà A. 2009. Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDITOF mass spectrometry. Plant Sci. 177: 570–576

    Article  CAS  Google Scholar 

  • Carvalho RC, Cunha A, and da Silva JM. 2011. Photosynthesis by six Portuguese maize cultivars during drought stress and recovery. Acta Physiol. Plant. 33: 359–374

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS. 2003. Understanding plant responses to drought-from genes to the whole plant. Funct. Plant Biol. 30: 239–264

    Article  CAS  Google Scholar 

  • de Vienne D, Leonardi A, Damerval C, Zivy M. 1999. Genetics of proteome variation for QTL characterization: application to drought-stress responses in maize. J. Exp. Bot. 50: 303–309

    Article  Google Scholar 

  • Gallé A, Csiszár J, Secenji M, Guóth A, Cseuz L, Tari I, Györgyey J, Erdei L. 2009. Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: response to water deficit. J. Plant Physiol. 166: 1878–1891

    Article  PubMed  Google Scholar 

  • Gao L, Yan X, Li X, Guo G, Hu Y, Ma W, Yan Y. 2011. Proteome analysis of wheat leaf under salt stress by twodimensional difference gel electrophoresis (2D-DIGE). Phytochemistry 72: 1180–1191

    Article  CAS  PubMed  Google Scholar 

  • Efeoglu B, Ekmekci Y, Cicek N. 2009. Physiological responses of three maize cultivars to drought stress and recovery. S. Afr. J. Bot. 75: 34–42

    Article  Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Salekdeh GH. 2005. Proteome analysis of sugar beet leaves under drought stress. Proteomics 5: 950–960

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Wu X, Li C, Lu M, Liu T, Wang Y, Wang W. 2012. Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays) in response to drought and light. PLoS One 7: e49500

  • Ji K, Wang Y, Sun W, Lou Q, Mei H, Shen S, Chen H. 2012. Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. J. Plant Physiol. 169: 336–344

    Article  CAS  PubMed  Google Scholar 

  • Kakumanu A, Ambavaram MM, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A. 2012. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiol. 160: 846–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalifa Y, Perlson E, Gilad A, Konrad Z, Scolnik PA, Bar-Zvi D. 2004. Over-expression of the water and salt stress-regulated Asr1 gene confers an increased salt tolerance. Plant Cell Environ. 27: 1459–1468

    Article  CAS  Google Scholar 

  • Kim SG, Kim ST, Kang SY, Wang Y, Kim W, Kang KY. 2008. Proteomic analysis of reactive oxygen species (ROS)-related proteins in rice roots. Plant Cell Rep. 27: 363–375

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, Wang Y, Lee KH, Park ZY, Park J, Wu J, Kwon SJ, Lee YH, Agrawal GK, Rakwal R, Kim ST, Kang KY. 2013. In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J. Proteomics 78: 58–71

    Article  CAS  PubMed  Google Scholar 

  • Lee BR, Jung WJ, Lee BH, Avice JC, Ourry A, Kim TH. 2008. Kinetics of drought-induced pathogenesis-related proteins and its physiological significance in white clover leaves. Physiol. Plant 132: 329–337

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Tang X, Huo Y, Xu R, Qi S, Huang J, Zheng C, Wu CA. 2012. Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene 503: 65–74

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N. 2005. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 444: 139–158

    Article  CAS  PubMed  Google Scholar 

  • Miazek K, Ledakowicz S. 2013. Chlorophyll extraction from leaves, needles and microalgae: A kinetic approach. Int. J. Agric. Biol. Eng. 6: 107–115

    CAS  Google Scholar 

  • Moffatt BA, Wang L, Allen MS, Stevens YY, Qin W, Snider J, von Schwartzenberg K. 2000. Adenosine kinase of Arabidopsis. Kinetic properties and gene expression. Plant Physiol. 124: 1775–1785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pechanova O, TakáC T, Samaj J, Pechan T. 2013. Maize proteomics: an insight into the biology of an important cereal crop. Proteomics 13: 637–662

    Article  CAS  PubMed  Google Scholar 

  • Peng ZY, Wang MC, Li F, Lu HJ, Li CL, Xia G. 2009. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol. Cell. Proteomics 8: 2676–2686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riccardi F, Gazeau P, Jacquemot MP, Vincent D, Zivy M. 2004. Deciphering genetic variations of proteome responses to water deficit in maize leaves. Plant Physiol. Biochem. 42: 1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, et al. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Shu LB, Ding W, Wu JH, Feng FJ, Luo LJ, Mei HW. 2010. Proteomic analysis of rice leaves shows the different regulations to osmotic stress and stress signals. J. Integr. Plant Biol. 52: 981–995

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K. 2007. Regulatory metabolic networks in drought stress responses. Curr. Opin. Plant Biol. 10: 296–302

    Article  CAS  PubMed  Google Scholar 

  • Sharma AD, Singh P. 2003. Comparative studies on droughtinduced changes in peptidyl prolyl cis-trans isomerase activity in drought-tolerant and susceptible cultivars of Sorghum bicolor. Curr. Sci. 87: 911–918

    Google Scholar 

  • Smart RE, Bingham GE. 1974. Rapid estimates of relative water content. Plant Physiol. 53: 258–260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spreitzer RJ, Salvucci ME. 2002. Rubisco: interactions, associations and the possibilities of a better enzyme. Annu. Rev. Plant Physiol. Mol. Biol. 53: 449–475

    Article  CAS  Google Scholar 

  • Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, Araus JL, Palacios-Rojas N, Fernie AR. 2012. Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol. Plant 5: 401–417

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Fu J, Gou M, Huai J, Liu Y, Jian M, Huang Q, Guo X, Dong Z, Wang H, Wang G. 2010. Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol. Biol. 72: 407–421

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Zhao J, Tao Y, Wang J, Liu Y, Fu J, Jin Y, Gao P, Zhang J, Bai Y, Wang G. 2004 Isolation and analysis of water stress induced genes in maize seedlings by subtrac tive PCR and cDNA macroarray. Plant Mol. Biol. 55: 807–823

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seonghyu Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.G., Bae, H.H., Jung, H.J. et al. Physiological and protein profiling response to drought stress in KS141, a Korean maize inbred line. J. Crop Sci. Biotechnol. 17, 273–280 (2014). https://doi.org/10.1007/s12892-014-0110-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-014-0110-5

Key words

Navigation