Skip to main content

Advertisement

Log in

Role of RNase on microbial community analysis in the rice and wheat plants soil by 16S rDNA-DGGE

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, we reported the role of RNase on microbial community analysis from soil samples. The amounts of chemical components were measured from the adjoining soil of rice and wheat plants. The chemical properties of these soils were rich in surface level as compared to other soil layers. Total DNA was extracted from freshly collected soils. To obtain pure DNA, half of the sample was incubated with RNase and half was without RNase. A total of 16S rDNA fragments were amplified and analyzed by Denaturing Gradient Gel Electrophoresis (DGGE). RNase-treated DNA followed by PCR resulted in a PCR product of good yield and integrity. DGGE bands and cluster analysis indicated a significant difference between the patterns obtained from RNase-treated and RNase non-treated samples. The sequencing results of 16S rDNA fragments from DGGE profiles of soil samples indicated that the dominant bacteria are composed of different gene sequences. This is an interesting preliminary observation which indicates that the RNase treatment prior to amplification and DGGE analysis modifies the pattern obtained. Therefore, it is suitable for community analysis of agricultural plant soil samples as well as environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan DL, Killorn R. 1996. Assessing soil nitrogen, phosphorus. In: JW Doran, AJ Jones, Eds, Methods for Assessing Soil Quality. Soil Science Society of America Special Publication 49, SSSA, Madison, WI, pp 187–201

    Google Scholar 

  • Al-Mujahidy SMJ, Hassan MM, Rahman MM, Mamun-Or-Rashid ANM. 2013. Study on measurement and statistical analysis of adherent soil chemical compositions of leguminous plants and their impact on nitrogen fixation. Int. J. Biosci. 3: 112–119

    Article  CAS  Google Scholar 

  • Alvey S, Yang CH, Buerkert A, Crowley DE. 2003. Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils. Biol. Fertil. Soils. 37: 73–82

    Google Scholar 

  • Ascher J, Ceccherini MT, Landi L, Mench M, Pietramellara G, Nannipieri P, Renella G. 2009. Composition, biomass and activity of microflora, and leaf yields and foliar elemental concentrations of lettuce, after in situ stabilization of an arsenic contaminated soil. Appl. Soil. Ecol. 41: 351–359

    Article  Google Scholar 

  • Blume E, Bischoff M, Reichert J, Moorman T, Konopka A, Turco R. 2002. Surface and subsurface community structure and metabolic activity as a function of soil depth and season. Appl. Soil Ecol. 592: 1–11

    Google Scholar 

  • Costa R, Gotz M, Mrotzek N, Lottmann J, Berg G, Smalla K. 2006. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol. Ecol. 56: 236–249

    Article  CAS  PubMed  Google Scholar 

  • de Ridder-Duine AS, Kowalchuk GA, Gunnewiek PJA, Smant KW, van Veen JA, de Boer W. 2005. Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol. Biochem. 37: 349–357

    Article  Google Scholar 

  • Dilly O, Bloem J, Vos A, Munch JC. 2004. Bacterial diversity in agricultural soils during litter decomposition. Appl. Environ. Microbiol. 70: 468–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duineveld BM, Rosado AS, Van Elsas JD, Van Veen JA. 1998. Analysis of the dynamics of bacterial communities in the rhizosphere of the Chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl. Environ. Microbiol. 64: 4950–4957.

    CAS  PubMed Central  PubMed  Google Scholar 

  • El Fantroussi S. 2000. Enrichment and molecular characteri zation of a bacterial culture that degrades methoxy-methyl urea herbicides and their aniline derivatives. Appl. Environ. Microbiol. 66: 5110–5115

    Article  PubMed Central  PubMed  Google Scholar 

  • Fierer N, Schimmel JP, Holden PA. 2003. Influence of drying-rewetting frequency on soil bacterial community structure. Microb. Ecol. 45: 63–71

    Article  CAS  PubMed  Google Scholar 

  • Fritze H, Perkiomaki J, Saarela U, Katainen R, Tikka P, Yrjala K, Karp M, Haimi J, Romantschuk M. 2000. Effects of Cd-containing wood-ash on the microflora of coniferous forest humus. FEMS Microbiol. Ecol. 32: 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS. 2003. Soil Type Is the Primary Determinant of the Composition of the Total and Active Bacterial Communities in Arable Soils. Appl. Environ. Microbiol. 69: 1800–1809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendonca-Hagler L. et al. 2003 Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl. Environ. Microbiol. 69 3758–3766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gomes NCM, Kosheleva IA, Abraham WR, Smalla K. 2005. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiol. Ecol. 54: 21–33

    Article  CAS  PubMed  Google Scholar 

  • Gremion F, Chatzinotas A, Harms H. 2003. Comparative 16S rRNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ. Microbiol. 5: 896–907

    Article  CAS  PubMed  Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ. 2000. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66: 5488–5491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harry M, Gambier B, Bourezgui Y, Garnier-Sillam E. 1999. Evaluation of purification procedures for DNA extracted from organic rich samples: interference with humic substances. Analysis 27: 439–442

    Article  CAS  Google Scholar 

  • Heuer H, Kroppenstedt RM, Berg G, Smalla K. 2002. Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl. Environ. Microbiol. 68: 1325–1335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233–3241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heuer H, Wieland G, Schönfeld J, Schönwälder A, Gomes NCM, Smalla K. 2001. Bacterial community profiling using DGGE or TGGE analysis, in Environmental Molecular microbiology, P Rouchelle, ed, Protocols and Applications, Horizon Scientific Press, Wymondham, UK, pp 177–190

    Google Scholar 

  • Ibekwe AM, Poss JA, Grattan SR, Grieve CM, Suarez D. 2010. Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biol. Biochem. 42: 567–575

    Article  CAS  Google Scholar 

  • Imamul HSM, Alam MD. 2005 A handbook on analysis of soil, plant and water, Bacer-DU, University of Dhaka, Bangladesh, pp 246

    Google Scholar 

  • Jolanda KB, van Elsas JD. 2008. Analysis of Bacterial Communities in Soil by Use of Denaturing Gradient Gel Electrophoresis and Clone Libraries, as Influenced by Different Reverse Primers. Appl. Environ. Microbiol. 74:2717–2727

    Article  Google Scholar 

  • Joynt J, Bischoff M, Turco RF, Konopka A, Nakatsu CH. 2006. Microbial community analysis of soils contaminated with lead, chromium and organic solvents. Microb. Ecol. 51: 209–219

    Article  CAS  PubMed  Google Scholar 

  • Kropf S, Heuer H, Gruning M, Smalla K. 2004. Significance test for comparing complex microbial community fingerprints using pairwise similarity measures. J. Microbiol. Meth. 57: 187–195

    Article  CAS  Google Scholar 

  • Krsek M, Wellington EMH. 1999. Comparison of different methods for the isolation and purification of total community DNA from soil. J. Microbiol. Meth. 39: 1–16

    Article  CAS  Google Scholar 

  • Lee DH, Zo YG, Kim SJ. 1996. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand conformation polymorphism. Appl. Environ. Microbiol. 62: 3112–3120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516–4522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch JM, Benedetti A, Insam H, Nuti MP, Smalla K, Torsvik V, Nannipieri P. 2004. Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol. Fertil. Soils. 40: 363–385

    Article  CAS  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG. 1998. Design and Evaluation of useful Bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64: 795–799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE. 2001. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 33: 1437–1445

    Article  CAS  Google Scholar 

  • Moran MA, Torsvik VL, Torsvik T, Hodso RE. 1993. Direct extraction and purification of rRNA for ecological studies. Appl. Environ. Microbiol. 59: 915–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mougel C, Offre P, Ranjard L, Corbeand T, Gamalero E, Robin C, Lemanceau P. 2006. Dynamics of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn.cv.jemalong line J5. New Phytol. 170: 165–175

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Ellen CW, Andre GU. 1993. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain amplified reaction genes encoding for 16Sr RNA. Appl. Environ. Microbiol. 59: 695–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakatsu CH. 2007. Soil microbial community analysis using denaturing gradient gel electrophoresis. Soil Sci. Soc. Am. J. 71: 562–571

    Article  CAS  Google Scholar 

  • Nakatsu CH, Carmosini N, Baldwin B, Beasley F, Kourtev P, Konopka A. 2005. Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb and Cr). Appl. Environ. Microbiol. 71: 7679–7689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakatsu, CH. 2004. Microbial community analysis, In D. Hillel et al., ed, Encyclopedia of soils in the environment, Elsevier, Oxford, UK, pp. 455–463

    Chapter  Google Scholar 

  • Nakatsu CH, Torsvik V, Øvreas L. 2000. Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci. Soc. Am. J. 64: 1382–1388

    Article  CAS  Google Scholar 

  • Nübel U, Garcia-Pichel F, Kühl M, Muyzer G. 1999. Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl. Environ. Microbiol. 65: 422–430

    PubMed Central  PubMed  Google Scholar 

  • Nunan N, Daniell TJ, Singh BK, Papert A, McNicol JW, Prosser JI. 2005. Links between plant and rhizoplane bac terial communities in grassland soils characterized using molecular techniques. Appl. Environ. Microbiol. 71: 6784–6792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osborn AM, Moore ERB, Timmis KN. 2000. An evaluation of terminal restriction fragment length polymorphism (TRFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2: 39–50

    Article  CAS  PubMed  Google Scholar 

  • Pielou EC. 1969. An Introduction to Mathematical Ecology. John Willy & Sons. Inc., New York

    Google Scholar 

  • Rahman MM, Basaglia M, Vendramin E, Boz B, Fontana F, Gumiero B, Casella S. 2014. Bacterial diversity of a wooded riparian strip soil specifically designed for enhancing denitrification process. Biol. Fertil. Soils 50(1): 25–35

    Article  Google Scholar 

  • Ritz K, McNicol JW, Nunan N, Grayston S, Millard P, Atkinson D, et al. 2004. Spatial structure in soil chemical and microbiological properties in upland grassland. FEMS Microbiol. Ecol. 49: 191–205

    Article  CAS  PubMed  Google Scholar 

  • Roose CL, Garnier SE, Harry M. 2001. Extraction and purification of microbial DNA from soil and sediment samples. Appl. Soil Ecol. 15: 47–60

    Article  Google Scholar 

  • Shannon CE, Weaver W. 1963. The Mathematical Theory of Communication, University of Illinois Press, Urbana

    Google Scholar 

  • Sikora LJ, Stott DE. 1996. Soil organic carbon and nitrogen. In: JW Doran, AJ Jones, Eds, Methods for Assessing Soil Quality, Soil Sci. Soc. Special Pub. 49, SSSA, Madison, WI, pp.157–167

    Google Scholar 

  • Steenwerth KL, Jackson LE, Calderon FG, Stromberg MR. 2008. Soil microbial community and land use history in cultivated and grassland ecosystems of coastal California. Soil Biol. Biochem. 35: 489–500

    Article  Google Scholar 

  • Thoms C, Gattinger A, Jacob M, Thomas FM, Gleixne G. 2010. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol. Biochem. 42: 1558–1565

    Article  CAS  Google Scholar 

  • USDA SCS. 1984. Procedures for collecting soil samples and methods of analysis for soil survey. Soil Survey Investigation Report No. 1

    Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. A naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261–5267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weber S, Stubner S, Conrad R. 2001. Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl. Environ. Microbiol. 67: 1318–1327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilbur JD, Ghosh JK, Nakatsu CH, Brouder SM, Doerge RW. 2002. Variable selection in high-dimensional multivariate binary data with application to the analysis of microbial community DNA fingerprints. Biometrics 58: 378–386

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Bollinger J, Ogram A. 1995. Molecular genetic analysis of the response of three soil microbial communities to the application of 2,4-D. Mol. Ecol. 4: 17–28

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Mizanur Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Azad, A.K., Sima, S.N. et al. Role of RNase on microbial community analysis in the rice and wheat plants soil by 16S rDNA-DGGE. J. Crop Sci. Biotechnol. 17, 229–237 (2014). https://doi.org/10.1007/s12892-014-0071-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-014-0071-8

Key words

Navigation