Skip to main content
Log in

Dopamine Electrochemical Sensor Based on Molecularly Imprinted Polymer on Carbon Electrodes with Platinum Nanoparticles

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

This article addresses the construction of a dopamine electrochemical sensor based on a molecularly imprinted polymer on carbon electrodes, for instance, glassy carbon and highly oriented pyrolytic graphite electrodes with the orientation of edge and basal plane by the formation of thiophene acetic acid-dopamine thin film using electropolymerization. The electrochemical deposition of Pt nanoparticles was then carried out at the modified electrode surface, followed by the extraction of dopamine as a template molecule from the generated layer was performed via elution brought on by chemicals. The variables that affect the performance of the imprinted polymer-based sensor, such as monomer-template ratio, immersion time, and the number of electropolymerization cycles, were examined and optimized. To confirm the changes in the oxidation peak current of DA and to investigate the electrochemical behavior of the MIP sensor, cyclic voltammetry, chronoamperometry, and differential pulse voltammetry (DPV) tests were performed. The differential pulse voltammetry studies revealed that, under ideal circumstances, the limit of detection values of the proposed MIP sensor decorated with Pt nanoparticles was found to be 14.40 nmol L−1, 42.50 nmol L−1, and 0.671 μmol L−1 for glassy carbon, edge, and basal plane electrodes, respectively. In the presence of interferents with comparable structural chemicals, such as ascorbic acid, uric acid, glucose, o-phenylenediamine, and glycine, the proposed sensor exhibits noticeable selectivity. Dopamine analysis in a human fluid such as blood serum was conducted with success using the devised sensor, which was shown to possess impressive stability and reproducibility.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be available on request.

References

  1. S.A. Zaidi, Sens. Actuators B Chem. (2018). https://doi.org/10.1016/j.snb.2018.03.076

    Article  Google Scholar 

  2. E. Farjami, R. Campos, J.S. Nielsen, K.V. Gothelf, J. Kjems, E.E. Ferapontova, Anal. Chem. (2013). https://doi.org/10.1021/ac302134s

    Article  PubMed  Google Scholar 

  3. J.G. Manjunatha, B.E.K. Swamy, G.P. Mamatha, C. Raril, L.N. Swamy, S. Fattepur, Mater. Today: Proc. (2018). https://doi.org/10.1016/j.matpr.2018.06.604

    Article  Google Scholar 

  4. X. Zhang, X. Chen, S. Kai, H.Y. Wang, J. Yang, F.G. Wu, Z. Chen, Anal. Chem. (2015). https://doi.org/10.1021/ac504520g

    Article  PubMed  PubMed Central  Google Scholar 

  5. H.X. Zhao, H. Mu, Y.H. Bai, H. Yu, Y.M. Hu, J. Pharm. Anal. (2011). https://doi.org/10.1016/j.jpha.2011.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  6. P. Chandra, H.B. Noh, R. Pallela, Y.B. Shim, Biosens. Bioelectron. (2015). https://doi.org/10.1016/j.bios.2015.03.069

    Article  PubMed  Google Scholar 

  7. P. Chandra, H.B. Noh, Y.B. Shim, Chem. Commun. (2013). https://doi.org/10.1039/c2cc38235k

    Article  Google Scholar 

  8. S. Krishnan, L. Tong, S. Liu, R. Xing, Microchim. Acta (2020). https://doi.org/10.1007/s00604-019-4045-x

    Article  Google Scholar 

  9. E. Nagles, O. Garcia-Beltran, J.A. Calderon, Electrochim. Acta (2017). https://doi.org/10.1016/j.electacta.2017.11.093

    Article  Google Scholar 

  10. F. Pekdemir, I. Kocak, A. Sengul, Electrocatalysis (2022). https://doi.org/10.1007/s12678-022-00706-w

    Article  Google Scholar 

  11. X. Wang, M. Wu, W.R. Tang, Y. Zhu, L.W. Wang, Q.J. Wang, P.G. He, Y.Z. Fang, J. Electroanal. Chem. (2013). https://doi.org/10.1016/j.jelechem.2013.02.021

    Article  Google Scholar 

  12. Y. Wu, P. Deng, Y. Tian, J. Feng, J. Xiao, J. Li, J. Liu, G. Li, Q. He, J. Nanobiotech. (2020). https://doi.org/10.1186/s12951-020-00672-9

    Article  Google Scholar 

  13. S. Ramanavicius, U. Samukaite-Bubniene, V. Ratautaite, M. Bechelany, A. Ramanavicius, J. Pharm. Biomed. Anal. (2022). https://doi.org/10.1016/j.jpba.2022.114739

    Article  PubMed  Google Scholar 

  14. O.W. Ngwanya, M. Ward, P.G.L. Baker, Electrocatalysis (2021). https://doi.org/10.1007/s12678-020-00638-3

    Article  Google Scholar 

  15. F.R. Wang, G.J. Lee, N. Haridharan, J.J. Wu, Electrocatalysis (2018). https://doi.org/10.1007/s12678-017-0411-9

    Article  Google Scholar 

  16. S.A. Zaidi, Electrophoresis (2013). https://doi.org/10.1002/elps.201200640

    Article  PubMed  Google Scholar 

  17. S.A. Zaidi, Drug Deliv. (2016). https://doi.org/10.3109/10717544.2014.970297

    Article  PubMed  Google Scholar 

  18. S.A. Zaidi, Biomater. Sci (2017). https://doi.org/10.1039/c6bm00765a

    Article  PubMed  Google Scholar 

  19. C. Xue, Q. Han, Y. Wang, J. Wu, T. Wen, R. Wang, J. Hong, X. Zhou, H. Jiang, Biosens. Bioelectron. (2013). https://doi.org/10.1016/j.bios.2013.04.022

    Article  PubMed  Google Scholar 

  20. S.M. Oliveira, J.M. Luzardo, L.A. Silva, D.C. Aguiar, C.A. Senna, R. Verdan, A. Kuznetsov, T.L. Vasconcelos, B.S. Archanjo, C.A. Achete, E. D’Elia, J.R. Araujo, Thin Solid Films (2020). https://doi.org/10.1016/j.tsf.2020.137875

    Article  Google Scholar 

  21. B. Li, Y. Zhou, W. Wu, M. Liu, S. Mei, Y. Zhou, T. Jing, Biosens. Bioelectron (2015). https://doi.org/10.1016/j.bios.2014.07.053

    Article  PubMed  PubMed Central  Google Scholar 

  22. B. Liu, H.T. Lian, J.F. Yin, X.Y. Sun, Electrochim. Acta (2012). https://doi.org/10.1016/j.electacta.2012.04.081

    Article  Google Scholar 

  23. Y. Li, H. Song, L. Zhang, P. Zuo, B.C. Ye, J. Yao, W. Chen, Biosens. Bioelectron. (2016). https://doi.org/10.1016/j.bios.2015.11.063

    Article  PubMed  PubMed Central  Google Scholar 

  24. V.M.A. Mohanan, A.K. Kunnummal, V.M.N. Biju, J. Mater. Sci. (2018). https://doi.org/10.1007/s10853-018-2355-8

    Article  Google Scholar 

  25. Y.C. Li, J. Liu, M.H. Liu, F. Yu, L. Zhang, H. Tang, B.C. Ye, L.F. Lai, Electrochem. Commun. (2016). https://doi.org/10.1016/j.elecom.2016.01.009

    Article  Google Scholar 

  26. N. Maouche, M. Guergouri, S. Gam-Derouich, M. Jouini, B. Nessark, M.M. Chehimi, J. Electroanal. Chem. (2012). https://doi.org/10.1016/j.jelechem.2012.08.020

    Article  Google Scholar 

  27. L. Kiss, V. David, I.G. David, P. Lazar, C. Mihailciuc, I. Stamatin, A. Ciobanu, C.D. Stefanescu, L. Nagy, G. Nagy, A.A. Ciucu, Talanta (2016). https://doi.org/10.1016/j.talanta.2016.07.024

    Article  PubMed  Google Scholar 

  28. Ş Sağlam, A. Arman, A. Üzer, B. Ustamehmetoğlu, E. Sezer, R. Apak, Electroanalysis (2019). https://doi.org/10.1002/elan.201900646

    Article  Google Scholar 

  29. Y.H. Song, J.J. Han, L.J. Xu, L.F. Miao, C.W. Peng, L. Wang, Sens. Actuators B Chem. (2019). https://doi.org/10.1016/j.snb.2019.126949

    Article  Google Scholar 

  30. D. Wu, H. Li, X.D. Xue, H.X. Fan, Q. Xin, Q. Wei, Anal. Methods (2013). https://doi.org/10.1039/c3ay26200f

    Article  PubMed Central  Google Scholar 

  31. S.J. Hong, L.Y.S. Lee, M.H. So, K.Y. Wong, Electroanalysis (2013). https://doi.org/10.1002/elan.201200631

    Article  Google Scholar 

  32. N. Ermiş, N. Tinkiliç, Electroanalysis (2021). https://doi.org/10.1002/elan.202060556

    Article  Google Scholar 

  33. R. Goldoni, M. Farronato, S.T. Connelly, G.M. Tartaglia, W.H. Yeo, Biosens. Bioelectron. (2021). https://doi.org/10.1016/j.bios.2020.112723

    Article  PubMed  Google Scholar 

  34. N.R. Sun, H.L. Yu, H. Wu, X.Z. Shen, C.H. Deng, Trac-Trends in Anal. Chem. (2021). https://doi.org/10.1016/j.trac.2020.116168

    Article  Google Scholar 

  35. W. Wojnowski, M. Tobiszewski, F. Pena-Pereira, E. Psillakis, Trac-Trends in Anal. Chem. (2022). https://doi.org/10.1016/j.trac.2022.116553

    Article  Google Scholar 

  36. D.K. Ashish, S.K. Verma, J. Hazard. Mater. (2021). https://doi.org/10.1016/j.jhazmat.2020.123329

    Article  PubMed  Google Scholar 

  37. H.R. Shan, Y. Si, J.Y. Yu, B. Ding, J. Chem. Eng. (2021). https://doi.org/10.1016/j.cej.2021.129211

    Article  Google Scholar 

  38. A.R. Cherian, L. Benny, A. George, U. Sirimahachai, A. Varghese, G. Hegde, Electrochim. Acta (2022). https://doi.org/10.1016/j.electacta.2022.139963

    Article  Google Scholar 

  39. H. Salleh, N. Ali, C.C. Yap, A.M. Sinin, N. Ishak, N.H. Kamarulzaman, S.M. Ghazali, N.A. Nik Ali, Solid State Phenom. (2020). https://doi.org/10.4028/www.scientific.net/ssp.307.207

  40. I. Kocak, M.A. Ghanem, A. Al-Mayouf, M. Alhoshan, P.N. Bartlett, J. Electroanal. Chem. (2013). https://doi.org/10.1016/j.jelechem.2013.07.035

    Article  Google Scholar 

  41. N.T. Hoang, P.T. Thuan Nguyen, P.D. Chung, V.T. Thu Ha, T.Q. Hung, P.T. Nam, V.T. Thu, RSC Adv. (2022). https://doi.org/10.1039/d2ra00040g

  42. Allen J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. Wiley (2000).

  43. O.C. Ozoemena, L.J. Shai, T. Maphumulo, K.I. Ozoemena, Electrocatalysis (2019). https://doi.org/10.1007/s12678-019-00520-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Faculty of Pharmacy for allowing use of the faculties’ facilities.

Funding

This work has been financially supported by the Zonguldak Bulent Ecevit University Scientific Research Project Coordination Unit (project number 201572118496–09).

Author information

Authors and Affiliations

Authors

Contributions

İ.K. carried out conception or design of the work, data collection, data analysis and interpretation, and drafting the article. B.G. carried out data collection, drafting the article. All authors reviewed the manuscript

Corresponding author

Correspondence to İzzet Koçak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2646 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koçak, İ., Gürler Akyüz, B. Dopamine Electrochemical Sensor Based on Molecularly Imprinted Polymer on Carbon Electrodes with Platinum Nanoparticles. Electrocatalysis 14, 763–775 (2023). https://doi.org/10.1007/s12678-023-00833-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00833-y

Keywords

Navigation