Skip to main content
Log in

Effects of Hydrophobic Species on the Oxygen Reduction Reaction on the High-Index Planes of Pt3Fe

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Pt3Fe(111), Pt3Fe(775) = 7(111)–(111), and Pt3Fe(544) = 9(111)–(100) electrodes show the highest activity in the low-index planes, n(111)–(111), and n(111)–(100) series of Pt3Fe, respectively. The surfaces of these electrodes were modified with hydrophobic species such as THA+, melamine, and ionic liquid ([MTBD][beti]), and the effects on the oxygen reduction reaction (ORR) were studied. All the hydrophobic species improved the ORR activity on all the electrodes examined. The ORR activity of Pt3Fe(111) in 0.1 M HClO4 containing 0.1 μM melamine was 2.1 times higher than that of Pt3Fe(111) without melamine, giving 39 times higher activity than that of bare Pt(111). The durability was improved on all the electrodes examined in melamine-containing solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Supporting data are available.

References

  1. N.M. Marković, R.R. Adzić, B.D. Cahan, E.B. Yeager, Structural effects in electrocatalysis: Oxygen reduction on platinum low index single–crystal surfaces in perchloric acid solutions. J. Electroanal. Chem. 377, 249–259 (1994). https://doi.org/10.1016/0022-0728(94)03467-2

    Article  Google Scholar 

  2. M.D. Maciá, J.M. Campiña, E. Herrero, J.M. Feliu, On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. J. Electroanal. Chem. 564, 141–150 (2004). https://doi.org/10.1016/j.jelechem.2003.09.035

    Article  CAS  Google Scholar 

  3. A. Kuzume, E. Herrero, J.M. Feliu, Oxygen reduction on stepped platinum surfaces in acidic media. J. Electroanal. Chem. 599, 333–343 (2007). https://doi.org/10.1016/j.jelechem.2006.05.006

    Article  CAS  Google Scholar 

  4. A. Hitotsuyanagi, M. Nakamura, N. Hoshi, Structural effects on the activity for the oxygen reduction reaction on n(111)–(100) series of Pt: Correlation with the oxide film formation. Electrochim. Acta 82, 512–516 (2012). https://doi.org/10.1016/j.electacta.2012.03.133

    Article  CAS  Google Scholar 

  5. N. Hoshi, M. Nakamura, A. Hitotsuyanagi, Active sites for the oxygen reduction reaction on the high–index planes of Pt. Electrochim. Acta 112, 899–904 (2013). https://doi.org/10.1016/j.electacta.2013.05.045

    Article  CAS  Google Scholar 

  6. Y. Takesue, M. Nakamura, N. Hoshi, Structural effects on the oxygen reduction reaction on the high index planes of Pt3Co. Phys. Chem. Chem. Phys. 16, 13774–13779 (2014). https://doi.org/10.1039/C4CP00243A

    Article  CAS  Google Scholar 

  7. T. Rurigaki, A. Hitotsuyanagi, M. Nakamura, N. Sakai, N. Hoshi, Structural effects on the oxygen reduction reaction on the high index planes of Pt3Ni: n(111)–(111) and n(111)–(100) surfaces. J. Electroanal. Chem. 716, 58–62 (2014). https://doi.org/10.1016/j.jelechem.2013.12.008

    Article  CAS  Google Scholar 

  8. V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science. 315, 493–497 (2007). https://doi.org/10.1126/science.1135941

    Article  CAS  Google Scholar 

  9. R. Jinnouchi, K. Kodama, Y. Moromoto, DFT calculations on H, OH and O adsorbate formations on Pt(111) and Pt(332) electrodes. J. Electroanal. Chem. 716, 31–44 (2014). https://doi.org/10.1016/j.jelechem.2013.09.031

    Article  CAS  Google Scholar 

  10. T. Toda, H. Igarashi, H. Uchida, M. Watanabe, Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 146, 3750–3756 (1999). https://doi.org/10.1149/1.1392544

    Article  CAS  Google Scholar 

  11. V. Stamenkovic, T.J. Schmidt, P.N. Ross, N.M. Markovic, Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well–defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 106, 11970–11979 (2002). https://doi.org/10.1021/jp021182h

    Article  CAS  Google Scholar 

  12. B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis–calculations and concepts. Adv. Catal. 45, 71–129 (2000). https://doi.org/10.1016/S0360-0564(02)45013-4

    Article  CAS  Google Scholar 

  13. A. Kulkarni, S. Siahrostami, A. Patel, J.K. Nørskov, Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488

    Article  CAS  Google Scholar 

  14. V. Stamenkovic, B.S. Mun, K.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Nørskov, Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. 118, 2963–2967 (2006). https://doi.org/10.1002/anie.200504386

    Article  CAS  Google Scholar 

  15. M. Wakisaka, S. Kobayashi, S. Morishima, Y. Hyuga, D.A. Tryk, M. Watanabe, A. Iiyama, H. Uchida, Unprecedented dependence of the oxygen reduction activity on Co content at Pt skin/Pt–Co(111) single crystal electrodes. Electrochem. Commun. 67, 47–50 (2016). https://doi.org/10.1016/j.elecom.2016.03.015

    Article  CAS  Google Scholar 

  16. S. Kobayashi, M. Wakisaka, D.A. Tryk, A. Iiyama, H, Uchida, Effect of alloy composition and crystal face of Pt–skin/Pt100–xCox [(111), (100), and (110)] single crystal electrodes on the oxygen reduction reaction activity. ACS Omega 121, 11234–11240 (2017). https://doi.org/10.1021/acs.jpcc.6b12567

    Article  CAS  Google Scholar 

  17. S. Kobayashi, M. Aoki, M. Wakisaka, T. Kawamoto, R. Shirasaka, K. Suda, D.A. Tryk, J. Inukai, T. Kondo, H. Uchida, Atomically flat Pt skin and striking enrichment of Co in underlying alloy at Pt3Co(111) single crystal with unprecedented activity for the oxygen reduction reaction. ACS Omega 3, 154–158 (2018). https://doi.org/10.1021/acsomega.7b01793

    Article  CAS  Google Scholar 

  18. C. Wang, D. Vilet, K.L. More, N.J. Zaluzec, S. Peng, S. Sun, H. Daimon, G. Wang, J. Greeley, J. Pearson, A.P. Paulikes, G. Karaprtrov, D. Strmcnik, N.M. Markovic, V.R. Stamenkovic, Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 11, 919–926 (2011). https://doi.org/10.1021/nl102369k

    Article  CAS  Google Scholar 

  19. Y. Shi, W. Yang, W. Gong, X. Wang, Y. Zhou, X. Shen, Y. Wu, J. Di, D. Zhang, Q. Li, Interconnected surface–vacancy–rich PtFe nanowires for efficient oxygen reduction. J. Mater. Chem. A 9, 12845–12852 (2021). https://doi.org/10.1039/D1TA00972A

    Article  CAS  Google Scholar 

  20. A. Suzuki, M. Nakamura, N, Hoshi, Effects of surface structures and hydrophobic species on the oxygen reduction reaction activity of Pt3Fe single–crystal electrodes. Electrocatalysis 13, 175–181 (2022). https://doi.org/10.1007/s12678-021-00699-y

    Article  CAS  Google Scholar 

  21. A. Suzuki, M. Nakamura, N, Hoshi, Structural effects of the oxygen reduction reaction on the high index planes of Pt3Fe. Electrochem Commun. 136, 107235–107241 (2022). https://doi.org/10.1016/j.elecom.2022.107235

    Article  CAS  Google Scholar 

  22. J.X. Wang, N.M. Markovic, R.R. Adzic, Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: Intrinsic kinetic parameters and anion adsorption effects. J. Phys. Chem. B 108, 4127–4133 (2004). https://doi.org/10.1021/jp037593v

    Article  CAS  Google Scholar 

  23. H. Tanaka, S. Sugawara, K. Shinohara, T. Ueno, S. Suzuki, N. Hoshi, M. Nakamura, Infrared reflection absorption spectroscopy of OH adsorption on the low index planes of Pt. Electrocatalysis 6, 295–299 (2015). https://doi.org/10.1007/s12678-014-0245-7

    Article  CAS  Google Scholar 

  24. T. Ueno, H. Tanaka, S. Sugawara, K. Shinohara, A. Ohma, N. Hoshi, M. Nakamura, Infrared spectroscopy of adsorbed OH on n(111)-(100) and n(111)-(111) series of Pt electrode. J. Electroanal. Chem. 800, 162–166 (2017). https://doi.org/10.1016/j.jelechem.2016.11.028

    Article  CAS  Google Scholar 

  25. K. Miyabayashi, H. Nishihara, M. Miyake, Platinum nanoparticles modified with alkylamine derivatives as an active and stable catalyst for oxygen reduction reaction. Langmuir 30, 2936–2942 (2014). https://doi.org/10.1021/la402412k

    Article  CAS  Google Scholar 

  26. K. Saikawa, M. Nakamura, N. Hoshi, Structural effects on the enhancement of ORR activity on Pt single–crystal electrodes modified with alkylamines. Electrochem. Commun. 87, 5–8 (2018). https://doi.org/10.1016/j.elecom.2017.12.016

    Article  CAS  Google Scholar 

  27. N. Hoshi, K. Saikawa, M. Nakamura, Structural effects on water molecules on the low index planes of Pt modified with alkyl amines and the correlation with the activity of the oxygen reduction reaction. Electrochem. Cummun. 106, 106536–106541 (2019). https://doi.org/10.1016/j.elecom.2019.106536

    Article  CAS  Google Scholar 

  28. M. Asahi, S. Yamazaki, N. Taguchi, T. Ioroi, Facile approach to enhance oxygen reduction activity by modification of platinum nanoparticles by melamine–formaldehyde polymer. J. Electroanal. Soc. 166, 498–506 (2019). https://doi.org/10.1149/2.0641908jes

    Article  CAS  Google Scholar 

  29. N. Wada, M. Nakamura, N. Hoshi, Structural effects on the oxygen reduction reaction on Pt single–crystal electrodes modified with melamine. Electrocatalysis 11, 275–281 (2020). https://doi.org/10.1007/s12678-020-00584-0

    Article  CAS  Google Scholar 

  30. T. Kumeda, H. Tajiri, O. Sakata, N. Hoshi, M. Nakamura, Effect of hydrophobic cations on the oxygen reduction reaction on single–crystal platinum electrodes. Nat. Commun. 9, 4378–4384 (2018). https://doi.org/10.1038/s41467-018-06917-4

    Article  CAS  Google Scholar 

  31. Y. Li, J. Hart, L. Profitt, S. Intikhab, S. Chatterjee, M. Taheri, J. Snyder, Sequential capacitive deposition of ionic liquids for conformal thin film coatings on oxygen reduction reaction electrocatalysts. ACS Catal. 9, 9311–9316 (2019). https://doi.org/10.1021/acscatal.9b03157

    Article  CAS  Google Scholar 

  32. J. Clavilier, R. Faure, G. Guinet, R. Durand, Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the (111) and (110) planes. J. Electroanal. Chem. 107, 205–209 (1980). https://doi.org/10.1016/S0022-0728(79)80022-4

    Article  CAS  Google Scholar 

  33. B.D. Cahan, H.M. Villullas, The hanging meniscus rotating disk (HMRD). J. Elecroanal. Chem. 307, 263–268 (1991). https://doi.org/10.1016/0022-0728(91)85553-2

    Article  CAS  Google Scholar 

  34. H.M. Villullas, M.L. Teijelo, The hanging meniscus rotating disk (HMRD) Part 1. Dependence of hydrodynamic behavior on experimental variables. J. Electroanal. Chem. 384, 25–30 (1995).

  35. H.M. Villullas, M.L. Teijelo, The hanging meniscus rotating disk (HMRD) Part 2. Application to simple charge transfer reaction kinetics. J. Electroanal. Chem. 385, 39–44 (1995).

  36. J. Clavilier, K. El Achi, A. Rodes, In situ probing of step and terrace sites on Pt(S)–[n(111) × (111)] electrodes. Chem. Phys. 141, 1–14 (1990). https://doi.org/10.1016/0301-0104(90)80014-O

    Article  CAS  Google Scholar 

  37. A. Rodes, K. El Achi, M.A. Zamakhchari, J. Clavilier, Hydrogen probing of step and terrace sites on Pt(S)–[n(111) × (100)]. J. Electroanal. Chem. 284, 245–253 (1990). https://doi.org/10.1016/0022-0728(90)87077-W

    Article  CAS  Google Scholar 

  38. N.M. Markovic, H.A. Gasteiger, P.N. Ross Jr., Oxygen reduction on platinum low–index single–crystal surfaces in sulfuric acid solution: Rotating ring–Pt(hkl) disk studies. J. Phys. Chem. 99, 3411–3415 (1995). https://doi.org/10.1021/j100011a001

    Article  CAS  Google Scholar 

Download references

Funding

This study was partially supported by New Energy and Industrial Technology Development Organization (NEDO) 20001187-0.

Author information

Authors and Affiliations

Authors

Contributions

Akane Suzuki did investigation, wrote the main manuscript text, prepared Figs. 1, 2, 3, 4, 5, 6, 7, 8, and 9. Masashi Nakamura supervised, reviewed and edited the manuscript. Haruki Shimada did DFT calculation, prepared Fig. 10. Nagahiro Hoshi conceptualized, supervised, administrated the project, acquired funding, reviewed and edited the manuscript.

Corresponding author

Correspondence to Nagahiro Hoshi.

Ethics declarations

Ethical Approval and Consent to Participate

All authors approve human ethics and consent to participate.

Consent for Publication

All authors consent to publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 427 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, A., Nakamura, M., Shimada, H. et al. Effects of Hydrophobic Species on the Oxygen Reduction Reaction on the High-Index Planes of Pt3Fe. Electrocatalysis 14, 306–314 (2023). https://doi.org/10.1007/s12678-022-00795-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00795-7

Keywords

Navigation