Skip to main content
Log in

Effects of Surface Structures and Hydrophobic Species on the Oxygen Reduction Reaction Activity of Pt3Fe Single-Crystal Electrodes

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The oxygen reduction reaction (ORR) on the low-index planes of Pt3Fe in O2-saturated 0.1 M HClO4 is studied using the hanging-meniscus rotating-disk electrode method. The ORR activity increases as follows: Pt3Fe (100) < Pt3Fe (110) < Pt3Fe (111). The ORR activity of Pt3Fe (111) is 20 times higher than that of Pt (111). The ORR activities on the low-index planes of Pt3Fe are improved by modifying the electrodes with hydrophobic species, such as the tetra-n-hexylammonium (THA+) cation, melamine, and the protonic ionic liquid [7-methyl-1,5,7-triazabicyclo[4.4.0] dec-5-ene] [bis(pentafluoroethylsulfonyl)imide]. The ORR activity of melamine-modified Pt3Fe (111) is 1.4 times higher than that of bare Pt3Fe (111).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N.M. Marković, R.R. Adzić, B.D. Cahan, E.B. Yeager, Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions., J. Electroanal. Chem. 377, 249–259 (1994).

  2. M.D. Maciá, J.M. Campiña, E. Herrero, J.M. Feliu, On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. J. Electroanal. Chem. 564, 141–150 (2004)

    Article  Google Scholar 

  3. A. Kuzume, E. Herrero, J.M. Feliu, Oxygen reduction on stepped platinum surfaces in acidic media. J. Electroanal. Chem. 599, 333–343 (2007)

    Article  CAS  Google Scholar 

  4. A. Hitotsuyanagi, M. Nakamura, N. Hoshi, Structural effects on the activity for the oxygen reduction reaction on n(111)–(100) series of Pt: correlation with the oxide film formation. Electrochim. Acta 82, 512–516 (2012)

    Article  CAS  Google Scholar 

  5. N. Hoshi, M. Nakamura, A. Hitotsuyanagi, Active sites for the oxygen reduction reaction on the high-index planes of Pt. Electrochim. Acta 112, 899–904 (2013)

    Article  CAS  Google Scholar 

  6. Y. Takesue, M. Nakamura, N. Hoshi, Structural effects on the oxygen reduction reaction on the high index planes of Pt3Co. Phys. Chem. Chem. Phys. 16, 13774–13779 (2014)

    Article  CAS  Google Scholar 

  7. T. Rurigaki, A. Hitotsuyanagi, M. Nakamura, N. Sakai, N. Hoshi, Structural effects on the oxygen reduction reaction on the high index planes of Pt3Ni: n(111)-(111) and n(111)-(100) surfaces. J. Electroanal. Chem. 716, 58–62 (2014)

    Article  CAS  Google Scholar 

  8. V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007)

    Article  CAS  Google Scholar 

  9. R. Jinnouchi, K. Kodama, Y. Moromoto, DFT calculations on H, OH and O adsorbate formations on Pt(111) and Pt(332) electrodes. J. Electroanal. Chem. 716, 31–44 (2014)

    Article  CAS  Google Scholar 

  10. K. Miyabayashi, H. Nishihara, M. Miyake, Platinum nanoparticles modified with alkylamine derivatives as an active and stable catalyst for oxygen reduction reaction. Langmuir 30, 2936–2942 (2014)

    Article  CAS  Google Scholar 

  11. T. Kumeda, H. Tajiri, O. Sakata, N. Hoshi, M. Nakamura, Effect of hydrophobic cations on the oxygen reduction reaction on single-crystal platinum electrodes. Nat. Commun. 9, 4378 (2018)

    Article  Google Scholar 

  12. M. Asahi, S. Yamazaki, N. Taguchi, T. Ioroi, Facile approach to enhance oxygen reduction activity by modification of platinum nanoparticles by melamine-formaldehyde polymer. J. Electroanal. Soc. 166, 498–506 (2019)

    Article  Google Scholar 

  13. N. Wada, M. Nakamura, N. Hoshi, Structural effects on the oxygen reduction reaction on Pt single-crystal electrodes modified with melamine. Electrocatalysis 11, 275–281 (2020)

    Article  CAS  Google Scholar 

  14. Y. Li, J. Hart, L. Profitt, S. Intikhab, S. Chatterjee, M. Taheri, J. Snyder, Sequential capacitive deposition of ionic liquids for conformal thin film coatings on oxygen reduction reaction electrocatalysts. ACS Catal. 9, 9311–9316 (2019)

    Article  CAS  Google Scholar 

  15. N. Hoshi, K. Saikawa, M. Nakamura, Structural effects on water molecules on the low index planes of Pt modified with alkyl amines and the correlation with the activity of the oxygen reduction reaction. Electrochem. Cummun. 106, 106536–106541 (2019)

    Article  CAS  Google Scholar 

  16. T. Toda, H. Igarashi, H. Uchida, M. Watanabe, Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 146, 3750–3756 (1999)

    Article  CAS  Google Scholar 

  17. V. Stamenkovic, T.J. Schmidt, P.N. Ross, N.M. Markovic, Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 106, 11970–11979 (2002)

    Article  CAS  Google Scholar 

  18. B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 45, 71–129 (2000)

    CAS  Google Scholar 

  19. A. Kulkarni, S. Siahrostami, A. Patel, J.K. Nørskov, Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018)

    Article  CAS  Google Scholar 

  20. V. Stamenkovic, B.S. Mun, K.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Nørskov, Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem. 118, 2963 (2006)

  21. M. Wakisaka, S. Kobayashi, S. Morishima, Y. Hyuga, D.A. Tryk, M. Watanabe, A. Iiyama, H. Uchida, Unprecedented dependence of the oxygen reduction activity on Co content at Pt skin/Pt–Co(111) single crystal electrodes. Electrochem. Commun. 67, 47–50 (2016)

    Article  CAS  Google Scholar 

  22. S. Kobayashi, M. Wakisaka, D.A. Tryk, A. Iiyama, H, Uchida, Effect of alloy composition and crystal face of Pt-skin/Pt100–xCox [(111), (100), and (110)] single crystal electrodes on the oxygen reduction reaction activity. ACS Omega 121, 11234–11240 (2017)

    CAS  Google Scholar 

  23. S. Kobayashi, M. Aoki, M. Wakisaka, T. Kawamoto, R. Shirasaka, K. Suda, D.A. Tryk, J. Inukai, T. Kondo, H. Uchida, Atomically flat Pt skin and striking enrichment of Co in underlying alloy at Pt3Co(111) single crystal with unprecedented activity for the oxygen reduction reaction. ACS Omega 3, 154–158 (2018)

    Article  CAS  Google Scholar 

  24. C. Wang, D. Vilet, K.L. More, N.J. Zaluzec, S. Peng, S. Sun, H. Daimon, G. Wang, J. Greeley, J. Pearson, A.P. Paulikes, G. Karaprtrov, D. Strmcnik, N.M. Markovic, V.R. Stamenkovic, Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 11, 919–926 (2011)

    Article  CAS  Google Scholar 

  25. C. Jung, C. Lee, K. Bang, J. Lim, H. Lee, H. Ryu, E. Cho, H. Lee, Synthesis of chemically ordered Pt3Fe/C intermetallic electrocatalysts for oxygen reduction reaction with enhanced activity and durability via a removable carbon coating. ACS Appl. Mater. Interfaces 9, 31806–31815 (2017)

    Article  CAS  Google Scholar 

  26. Y. Shi, W. Yang, W. Gong, X. Wang, Y. Zhou, X. Shen, Y. Wu, J. Di, D. Zhang, Q. Li, Interconnected surface-vacancy-rich PtFe nanowires for efficient oxygen reduction. J. Mater. Chem. A 9, 12845–12852 (2021)

    Article  CAS  Google Scholar 

  27. J. Clavilier, R. Faure, G. Guinet, R. Durand, Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the (111) and (110) planes. J. Electroanal. Chem. 107, 205–209 (1980)

    Article  CAS  Google Scholar 

  28. B.D. Cahan, H.M. Villullas, The hanging meniscus rotating disk (HMRD). J. Elecroanal. Chem. 307, 263–268 (1991)

    Article  CAS  Google Scholar 

  29. H.M. Villullas, M.L. Teijelo, The hanging meniscus rotating disk (HMRD) Part 1. Dependence of hydrodynamic behavior on experimental variables. J Electroanal. Chem. 384, 25–30 (1995)

  30. H.M. Villullas, M.L. Teijelo, The hanging meniscus rotating disk (HMRD) Part 2. Application to simple charge transfer reaction kinetics. J. Electroanal. Chem. 385, 39–44 (1995)

  31. N. Garcia-Araez, V. Climent, J.M. Feliu, Analysis of temperature effects on hydrogen and OH adsorption on Pt(111), Pt(100) and Pt(110) by means of Gibbs thermodynamics. J. Electroanal. Chem. 649, 69–82 (2010)

    Article  CAS  Google Scholar 

  32. H. Tanaka, S. Sugawara, K. Shinohara, T. Ueno, S. Suzuki, N. Hoshi, M. Nakamura, Infrared reflection absorption spectroscopy of OH adsorption on the low index planes of Pt. Electrocatalysis 6, 295–299 (2015)

    Article  CAS  Google Scholar 

  33. E. Yeager, Electrocatalysts for O2 reduction. Electrochim. Acta 29, 1527–1537 (1984)

    Article  CAS  Google Scholar 

  34. T. Ueno, H. Tanaka, S. Sugawara, K. Shinohara, A. Ohma, N. Hoshi, M. Nakamura, Infrared spectroscopy of adsorbed OH on n(111)–(100) and n(111)–(111) series of Pt electrode. J. Electroanal. Chem. 80, 162–166 (2017)

    Article  Google Scholar 

  35. F. Sugimura, N. Sakai, T. Nakamura, M. Nakamura, K. Ikeda, T. Sakai, N. Hoshi, In situ observation of Pt oxides on the low index planes of Pt using surface enhanced Raman spectroscopy. Phys. Chem. Chem. Phys. 19, 27570–27579 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagahiro Hoshi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 363 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, A., Nakamura, M. & Hoshi, N. Effects of Surface Structures and Hydrophobic Species on the Oxygen Reduction Reaction Activity of Pt3Fe Single-Crystal Electrodes. Electrocatalysis 13, 175–181 (2022). https://doi.org/10.1007/s12678-021-00699-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00699-y

Keywords

Navigation