Skip to main content
Log in

Catalyst Degradation Under Potential Cycling as an Accelerated Stress Test for PBI-Based High-Temperature PEM Fuel Cells—Effect of Humidification

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In the present work, high-temperature polymer electrolyte membrane fuel cells were subjected to accelerated stress tests of 30,000 potential cycles between 0.6 and 1.0 V at 160 °C (133 h cycling time). The effect that humidity has on the catalyst durability was studied by testing either with or without humidification of the nitrogen that was used as cathode gas during cycling segments. Pronounced degradation was seen from the polarization curves in both cases, though permanent only in the humidified case. In the unhumidified case, the performance loss was more or less recoverable following 24 h of operation at 200 mA cm−2. A difference in degradation behavior was verified with electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The strong effect of humidification is explained by drying of the phosphoric acid that is in the catalyst layer(s) versus maintaining humidification of this region. Catalyst degradation due to platinum dissolution, transport of its ions, and eventual recrystallization is reduced when this portion of the acid dries out. Consequently, catalyst particles are only mildly affected by the potential cycling in the unhumidified case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.T.D. Jakobsen, J.O. Jensen, L.N. Cleemann, Q. Li, in High Temperature Polymer Electrolyte Membrane Fuel Cells: Approaches, Status and Perspectives, ed. by Q. Li, D. Aili, H.A. Hjuler, J.O. Jensen. (Springer, Cham, 2016), pp. 487–509

    Chapter  Google Scholar 

  2. T.J. Schmidt, in Polymer Electrolyte Fuel Cell Durability, ed. by F.N. Büchi, M. Inaba, T.J. Schmidt. (Springer, New York, 2009), pp. 199–221

    Chapter  Google Scholar 

  3. P.J. Ferreira, G.J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, J. Electrochem. Soc. 152, A2256-A2271 (2005)

    Article  Google Scholar 

  4. Y. Shao-Horn, W.C. Sheng, S. Chen, P.J. Ferreira, E.F. Holby, D. Morgan, Top. Catal. 46, 285–305 (2007)

    Article  CAS  Google Scholar 

  5. J. Li, in PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, ed. by J. Zhang. (Springer, London, 2008), pp. 1041–1094

    Chapter  Google Scholar 

  6. K. Sasaki, M. Shao, R. Adzic, in Polymer Electrolyte Fuel Cell Durability, ed. by F.N. Büchi, M. Inaba, T.J. Schmidt. (Springer, New York, 2009), pp. 7–27

    Chapter  Google Scholar 

  7. K. Kinoshita, Carbon: Electrochemical and Physiochemical Properties (Wiley, New York, 1988), pp. 316–334

    Google Scholar 

  8. A.V. Virkar, Y. Zhou, J. Electrochem. Soc. 154, B540–B547 (2007)

    Article  CAS  Google Scholar 

  9. M.J. Eslamibidgoli, J. Huang, T. Kadyk, A. Malek, M. Eikerling, Nano Energy 29, 334–361 (2016)

    Article  CAS  Google Scholar 

  10. V. Atrazhev, S.F. Burlatsky, N.E. Cipollini, D.A. Condit, N. Erikhman, ECS Trans. 1, 239–246 (2006)

    CAS  Google Scholar 

  11. A. Ohma, S. Suga, S. Yamamoto, K. Shinohara, ECS Trans. 3, 519–529 (2006)

    Article  CAS  Google Scholar 

  12. W. Bi, G.E. Gray, T.F. Fuller, Electrochem. Solid State Lett. 10, B101–B104 (2007)

    Article  CAS  Google Scholar 

  13. J. Zhang, B.A. Litteer, W. Gu, H. Liu, H.A. Gasteiger, J. Electrochem. Soc. 154, B1006–B1011 (2007)

    Article  CAS  Google Scholar 

  14. L. Kim, C.G. Chung, Y.W. Sung, J.S. Chung, J. Power Sources 183, 524–532 (2008)

    Article  CAS  Google Scholar 

  15. S. Cherevko, N. Kulyk, K.J.J. Mayrhofer, Nano Energy 29, 275–298 (2016)

    Article  CAS  Google Scholar 

  16. C. Hartnig, T.J. Schmidt, J. Power Sources 196, 5564–5572 (2011)

    Article  CAS  Google Scholar 

  17. M. Rau, A. Niedergesäß, C. Cremers, S. Alfaro, T. Steenberg, H.A. Hjuler, Fuel Cells 16, 577–583 (2016)

  18. R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, M.A. Inbody, J. Power Sources 163, 76–81 (2006)

    Article  CAS  Google Scholar 

  19. M. Uchimura, S. Sugawara, Y. Suzuki, J. Zhang, S.S. Kocha, ECS Trans. 16, 225–234 (2008)

    Article  CAS  Google Scholar 

  20. W. Bi, Q. Sun, Y. Deng, T.F. Fuller, Electrochim. Acta 54, 1826–1833 (2009)

    Article  CAS  Google Scholar 

  21. F.T. Wagner, S.G. Yan, P.T. Yu, in Handbook of Fuel Cells: Fundamentals, Technology and Applications—Volume 5: Advances in Electrocatalysis, Materials, Diagnostics and Durability, ed. by W. Vielstich, H. Yokokawa, H.A. Gasteiger (Wiley, Weinheim, 2009), p. 250–264

  22. S.S. Kocha, in Polymer Electrolyte Fuel Cell Degradation, ed. by M.M. Mench, E.C. Kumbur, T.N. Veziroğlu. (Academic, Oxford, 2012), pp. 89–214

    Chapter  Google Scholar 

  23. Y. Zhai, H. Zhang, D. Xing, Z.-G. Shao, J. Power Sources 164, 126–133 (2007)

    Article  CAS  Google Scholar 

  24. T.J. Schmidt, J. Baurmeister, J. Power Sources 176, 428–434 (2008)

    Article  CAS  Google Scholar 

  25. S. Yu, L. Xiao, B.C. Benicewicz, Fuel Cells 8, 165–174 (2008)

    CAS  Google Scholar 

  26. P. Moçotéguy, B. Ludwig, J. Scholta, Y. Nedellec, D.J. Jones, J. Rozière, Fuel Cells 10, 299–331 (2010)

    Article  Google Scholar 

  27. M.R. Berber, T. Fujigaya, K. Sasaki, N. Nakashima, Sci Rep 3, 1764 (2013)

    Article  Google Scholar 

  28. L.N. Cleemann, F. Buazar, Q. Li, J.O. Jensen, C. Pan, T. Steenberg, S. Dai, N.J. Bjerrum, Fuel Cells 13, 822–831 (2013)

    CAS  Google Scholar 

  29. M. Rastedt, D. Schonvogel, P. Wagner, ECS Trans. 64, 741–753 (2014)

    Article  CAS  Google Scholar 

  30. N. Pilinski, M. Rastedt, P. Wagner, ECS Trans. 69, 323–335 (2015)

    Article  CAS  Google Scholar 

  31. F.J. Pinar, N. Pilinski, M. Rastedt, P. Wagner, Int. J. Hydrog. Energy 40, 5432–5438 (2015)

    Article  CAS  Google Scholar 

  32. F. Zhou, S.J. Andreasen, S.K. Kær, D. Yu, Int. J. Hydrog. Energy 40, 2833–2839 (2015)

    Article  CAS  Google Scholar 

  33. F.J. Pinar, M. Rastedt, N. Pilinski, P. Wagner, Int. J. Hydrog. Energy 41, 19463–19474 (2016)

    Article  Google Scholar 

  34. M. Rastedt, F.J. Pinar, N. Pilinski, A. Dyck, P. Wagner, ECS Trans. 75, 455–469 (2016)

    Article  Google Scholar 

  35. D. Schonvogel, M. Rastedt, P. Wagner, M. Wark, A. Dyck, Fuel Cells 16, 480–489 (2016)

    CAS  Google Scholar 

  36. R. Taccani, T. Chinese, M. Boaro, Int. J. Hydrog. Energy 42, 1875–1883 (2017)

    Article  CAS  Google Scholar 

  37. A. Vassiliev, High Temperature PEM Fuel Cells and Organic Fuels. (PhD thesis, Department of Energy Conversion and Storage, Technical University of Denmark, 2014)

  38. M. Prasanna, H.Y. Ha, E.A. Cho, S.-A. Hong, I.-H. Oh, J. Power Sources 137, 1–8 (2004)

    Article  CAS  Google Scholar 

  39. K. O'Neil, J.P. Meyers, R.M. Darling, M.L. Perry, Int. J. Hydrog. Energy 37, 373–382 (2012)

    Article  Google Scholar 

  40. X.-Z. Yuan, S. Chaojie, W. Haijiang, Z. Jiujun, Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications (Springer, London, 2010), pp. 193–262

    Book  Google Scholar 

  41. C. Korte, F. Conti, J. Wackerl, W. Lehnert, in High Temperature Polymer Electrolyte Membrane Fuel Cells: Approaches, Status and Perspectives, ed. by Q. Li, D. Aili, H.A. Hjuler, J.O. Jensen. (Springer, Cham, 2016), pp. 169–194

    Chapter  Google Scholar 

  42. J.-P. Melchior, K.-D. Kreuer, J. Maier, Phys. Chem. Chem. Phys. 19, 587–600 (2017)

    Article  CAS  Google Scholar 

  43. T. Engl, K.E. Waltar, L. Gubler, T.J. Schmidt, J. Electrochem. Soc. 161, F500–F505 (2014)

    Article  CAS  Google Scholar 

  44. R.M. Darling, J.P. Meyers, J. Electrochem. Soc. 152, A242–A247 (2005)

    Article  CAS  Google Scholar 

  45. M.P. Rodgers, L.J. Bonville, H.R. Kunz, D.K. Slattery, J.M. Fenton, Chem. Rev. 112, 6075–6103 (2012)

    Article  CAS  Google Scholar 

  46. M.J. Eslamibidgoli, P.-É.A. Melchy, M.H. Eikerling, Phys. Chem. Chem. Phys. 17, 9802–9811 (2015)

    Article  CAS  Google Scholar 

  47. R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-I. Kimijima, N. Iwashita, Chem. Rev. 107, 3904–3951 (2007)

    Article  CAS  Google Scholar 

  48. P. Bindra, S.J. Clouser, E. Yeager, J. Electrochem. Soc. 126, 1631–1632 (1979)

    Article  CAS  Google Scholar 

  49. K. Mitsuda, H. Shiota, T. Murahashi, Corrosion 46, 628–633 (1990)

    Article  CAS  Google Scholar 

  50. Q. Li, X. Gang, H.A. Hjuler, R.W. Berg, N.J. Bjerrum, J. Electrochem. Soc. 141, 3114–3119 (1994)

    Article  CAS  Google Scholar 

  51. R. Zeis, Beilstein J. Nanotechnol. 6, 68–83 (2015)

    Article  Google Scholar 

  52. K.E. Gubbins, R.D. Walker Jr., J. Electrochem. Soc. 112, 469–471 (1965)

    CAS  Google Scholar 

  53. K. Klinedinst, J.A.S. Bett, J. Macdonald, P. Stonehart, J. Electroanal. Chem. Interfacial Electrochem. 57, 281–289 (1974)

    Article  CAS  Google Scholar 

  54. F. Gan, D.-T. Chin, J. Appl. Electrochem. 23, 452–455 (1993)

    CAS  Google Scholar 

  55. Z. Liu, J.S. Wainright, M.H. Litt, R.F. Savinell, Electrochim. Acta 51, 3914–3923 (2006)

    Article  CAS  Google Scholar 

  56. M. Fleige, K. Holst-Olesen, G.K.H. Wiberg, M. Arenz, Electrochim. Acta 209, 399–406 (2016)

    Article  CAS  Google Scholar 

Download references

Funding Information

This work has been financially supported by the Danish ForskEL program (DuRaPEM III, no. 2013-1-12064; UPCAT, no. 2015-1-12315; SMARTMEA, no. 2014-1-12218) and by Innovation Fund Denmark (4M Centre, no. 12-132710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Oluf Jensen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Søndergaard, T., Cleemann, L.N., Zhong, L. et al. Catalyst Degradation Under Potential Cycling as an Accelerated Stress Test for PBI-Based High-Temperature PEM Fuel Cells—Effect of Humidification. Electrocatalysis 9, 302–313 (2018). https://doi.org/10.1007/s12678-017-0427-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0427-1

Keywords

Navigation