Skip to main content
Log in

PtCoCr/C electrocatalysts for proton-conducting polymer electrolyte fuel cells

  • General Problems of Catalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Results from studies done at the Frumkin Institute of Physical Chemistry and Electrochemistry on creating modern PtCoCr/C core-shell catalytic systems, in which the core is an alloy of metals and the shell is enriched with platinum, are discussed. A new catalyst property that ensures activity, oxygen-to-water reduction selectivity, and corrosion stability is the reduced occupation of the Pt shell’s surface by strongly chemosorbed oxygen. A design for a PtCoCr/C membrane electrode assembly (MEA) cathode is developed, and accelerated stress tests in a proton-conducting polymer electrolyte fuel cell are performed to determine its service life. It is shown that the characteristics obtained using PtCoCr/C (30 wt % of Pt) and a halved amount of Pt on the cathode compare well with the characteristics for Pt/C catalyst. In addition, the efficiency of Pt in PtCoCr/C is much higher than in Pt/C under the studied conditions. The final results allow us to move on to the next stage of our work: organizing the production of state-of-the-art low-temperature fuel cells with characteristics that meet international standards, using domestic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mock, P. and Schmid, S.A., J. Power Sources, 2009, vol. 190, no. 1, pp. 133–140.

    Article  CAS  Google Scholar 

  2. Schoots, K., Kramer, G.J., and van der Zwaan, B.C.C., Energy Policy, 2010, vol. 38, no. 6, pp. 2887–2897.

    Article  Google Scholar 

  3. Greeley, J., Rossmeis, J., Hellman, A., and Norskov, J.K., Z. Phys. Chem. (Leipzig), 2007, vol. 221, nos. 9–10, pp. 1209–1220.

    Article  CAS  Google Scholar 

  4. Groom, D.J., Rajasekhara, S., Matyas, S., et al., ECS Trans., 2011, vol. 41, no. 1, pp. 933–936.

    Article  CAS  Google Scholar 

  5. Rabis, A., Rodriguez, P., and Schmidt, T.J., ACS Catal., 2012, vol. 2, no. 5, pp. 864–890.

    Article  CAS  Google Scholar 

  6. Martin, K.E., Kopasz, J.P., Benjamin, T.G., et al., ECS Trans., 2011, vol. 41, no. 1, pp. 917–932.

    Article  Google Scholar 

  7. Selvaganesh, S.V., Sridhar, P., Pitchumani, S., and Shukla, A.K., J. Electrochem. Soc., 2013, vol. 160, no. 1, pp. F49–F59.

    Article  CAS  Google Scholar 

  8. Handbook of Fuel Cells: Fundamentals, Technology and Applications, Vielstich, W., Lamm, A., and Gasteiger, H., Eds., 4 vols., Chichester, UK: Wiley, 2003.

    Google Scholar 

  9. Seo, A., Lee, J., Han, K., and Kim, H., Electrochim. Acta, 2006, vol. 52, no. 4, pp. 1603–1611.

    Article  CAS  Google Scholar 

  10. Wakabayashi, N., Takeichi, M., Uchida, H., and Watanabe, M., J. Phys. Chem. B, 2005, vol. 109, no. 12, pp. 5836–5841.

    Article  CAS  Google Scholar 

  11. Colón-Mercado, H.R., Kim, H., and Popov, B.N., Electrochem. Commun., 2004, vol. 6, no. 8, pp. 795–799.

    Article  Google Scholar 

  12. Liu, Z., Xin, H., Yu, Z., et al., J. Electrochem. Soc., 2012, vol. 159, no. 9, pp. F554–F559.

    Article  CAS  Google Scholar 

  13. Wang, D., Xin, H.L., Hovden, R., et al., Nat. Mater., 2013, vol. 12, no. 1, pp. 81–87. doi 10.1038/nmat3458.

    Article  CAS  Google Scholar 

  14. Mathew, P., Meyers, J.P., Srivastava, R., and Strasser, P., J. Electrochem. Soc., 2012, vol. 159, no. 5, pp. B554–B563.

    Article  CAS  Google Scholar 

  15. Salgado, J.R.C., Antolini, E., and Gonzalez, E.R., J. Phys. Chem. B, 2004, vol. 108, no. 46, pp. 17767–17774.

    Article  CAS  Google Scholar 

  16. Ahluwalia, R.K., Wang, X., Lajunen, A., Steinbach, A.J., et al., J. Power Sources, 2012, vol. 215, pp. 77–88.

    Article  CAS  Google Scholar 

  17. Tarasevich, M.R. and Bogdanovskaya, V.A., ISJAEE, 2009, no. 12, pp. 24–56.

    Google Scholar 

  18. Bogdanovskaya, V.A., Tarasevich, M.R., and Lozovaya, O.V., Russ. J. Electrochem., 2011, vol. 47, no. 7, pp. 846–860.

    Article  CAS  Google Scholar 

  19. Stamenković, V., Schmidt, T.J., Ross, P.N., and Marković, N.M., J. Electroanal. Chem., 2003, vols. 554–555, pp. 191–199.

    Article  Google Scholar 

  20. Tarasević, M.R., Bogdanovskaya, V.A., Gavrilov, Yu.G., Zhutaeva, G.V., et al., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 2, pp. 125–144.

    Article  Google Scholar 

  21. Tarasevich, M.R., Khrushcheva, E.I., and Filinovskii, V.Yu. Vrashchyayushchiisya diskovyi elektrod s kol’tsom (Rotating Disk Electrode with a Ring), Moscow: Nauka, 1987.

    Google Scholar 

  22. Czerw, R., Terrones, M., Charlier, J.-C., Blasé, X., Foley, B., Kamalakaran, R., et al., Nano Lett., 2001, vol. 9, no. 1, pp. 457–460.

    Article  Google Scholar 

  23. Hu, X., Wu, Y., Li, H., and Zhang, Z., J. Phys. Chem. C, 2010, vol. 114, no. 21, pp. 9603–9607.

    Article  CAS  Google Scholar 

  24. Li, X., Park, S., and Popov, B.N., J. Power Sources, 2010, vol. 195, no. 2, pp. 445–452.

    Article  CAS  Google Scholar 

  25. Montoya, A., Gil, J.O., Mondragon, F., and Truong, T.N., Prepr. Symp.-Am. Chem. Soc., Div. Fuel Chem., 2002, vol. 47, no. 2, pp. 424–425.

    CAS  Google Scholar 

  26. Sugawara, Y., Okayasu, T., Yadav, A.P., Nishikata, A., and Tsuru, T., J. Electrochem. Soc., 2012, vol. 159, no. 11, pp. F779–F786.

    Article  CAS  Google Scholar 

  27. Sasaki, K., Shao, M., and Adzic, R., in Polymer Electrolyte Fuel Cell Durability, Büchi, F.N., Inaba, M., and Schmidt, T.J., Eds., New York: Springer, 2009, pp. 7–27.

  28. Avakov, V.B., Aliev, A.D., Beketaeva, L.A., et al., Russ. J. Electrochem., 2014 (in press).

    Google Scholar 

  29. Jomori, S., Nonoyama, N., and Yoshiba, T., J. Power Sources, 2012, vol. 215, pp. 18–27.

    Article  CAS  Google Scholar 

  30. Mayrhofer, K.J.J., Strmcnik, D., Blizanac, B.B., Stamencovic, V., Arenz, M., and Marcovic, N.M., Electrochim. Acta., 2008, vol. 53, no. 7, pp. 3181–3188.

    Article  CAS  Google Scholar 

  31. Wu, J., Yuan, X., Martin, J.J., Wang, H., Zhang, J., et al., J. Power Sources, 2008, vol. 184, no. 1, pp. 104–119.

    Article  CAS  Google Scholar 

  32. Arisetty, S., Wang, X., Ahluwalia, R.K., et al., J. Electrochem. Soc., 2012, vol. 159, no. 5, pp. B455–B462.

    Article  CAS  Google Scholar 

  33. Sethuraman, V.A., Weidner, J.W., Hang, A.T., Motupally, S., and Protsailo, L.V., J. Electrochem. Soc., 2008, vol. 155, no. 1, pp. B50–B57.

    Article  CAS  Google Scholar 

  34. Mittal, V.O., Kunz, H.R., and Fenton, J.M., J. Electrochem. Soc., 2006, vol. 153, no. 9, pp. A1755–A1759.

    Article  CAS  Google Scholar 

  35. Sugawara, S., Ohma, A., Tabuchi, Y., and Shinohara, K., ISJAEE, 2010, no. 9, pp. 89–105.

    Google Scholar 

  36. Lehmani, A., Turq, P., Périé, M., Périé, J., and Simonin, J.-P., J. Electroanal. Chem., 1997, vol. 428, nos. 1–2, pp. 81–89.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bogdanovskaya.

Additional information

Original Russian Text © M.R. Tarasevich, V.A. Bogdanovskaya, V.N. Andreev, 2014, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasevich, M.R., Bogdanovskaya, V.A. & Andreev, V.N. PtCoCr/C electrocatalysts for proton-conducting polymer electrolyte fuel cells. Catal. Ind. 6, 159–169 (2014). https://doi.org/10.1134/S2070050414030143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050414030143

Keywords

Navigation