Skip to main content
Log in

3D π-Conjugated Poly(amic) Acid Polymer as Support Matrices for Ethanol Electro-Oxidation on Palladium and Platinum Catalysts

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

An Erratum to this article was published on 17 May 2016

Abstract

The search for new catalyst support matrices to replace the conventional carbon black support has been an important research field for decades. Aromatic conducting polymer (ACP)-based matrices have been found as prospective candidates. Poly(amic) acid (PAA) is one such polymer. We hereby present the catalytic activity and stability of electrodeposited palladium (PdNPs) and platinum (PtNPs) nanoparticles stabilized with PAA. We fabricated four electrodes: Pd/GCE, PAA/Pd/GCE, Pt/GCE, and PAA/Pt/GCE. Cyclic voltammetry and chronoamperometry were employed to assess the ethanol oxidation reaction using PAA as support matrix. PAA was used as support to enhance the stability of PdNPs and PtNPs in basic and acidic media, respectively. The synthesized PAA was characterized using NMR and FTIR. Scanning electron microscopy and X-ray diffraction (XRD) were used for nanoparticle characterization. Test results revealed that the presence of PAA layer on the catalysts leads to sluggish electron transfer kinetics as deduced from higher forward and reverse current densities (5 and 11 mA/cm2) for PdNPs on glassy carbon (Pd/GCE) electrode compared to PAA-stabilized PdNPs (PAA/Pd/GCE) (0.6 and 1.2 mA/cm2), respectively. A similar trend was reported for PtNPs. However, in presence of PAA, both PtNPs and PdNPs were observed to provide stability at up to 900 and 150 cycles, respectively. Chronoamperometric results reinforced the catalyst stabilization effect of the polymer, with findings revealing that the steady-state current density of PAA/Pd/GCE was ∼2.5 times higher than the bare Pd/GCE.

Poly (amic) acid (PAA)- a biodegradable, electroactive, conductive and π-conjugated polymer- was spin coated onto electrodeposited Pd and Pt nanoparticles and subsequently used for ethanol oxidation reaction in basic and acidic conditions respectively. The catalytic activity of Pd and Pt nanoparticles was retained and the catalyst stability enhanced in presence of PAA film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Bangyang, H. Tang, M. Pan, Int. J. Hydrog. Energy 37, 4612 (2012)

    Article  CAS  Google Scholar 

  2. J. Yang, Y. Xie, R. Wang, B. Jiang, C. Tian, G. Mu, J. Yin, B. Wang, H. Fu, ACS Appl. Mater. Interfaces 5, 6571 (2013)

    Article  CAS  Google Scholar 

  3. W. Zhou, S.Q. Song, W.Z. Li, Z.H. Zhou, G. Sun, Q. Xin, S. Douvartzides, P. Tsiakaras, J. Power Sources 140, 50 (2005)

    Article  CAS  Google Scholar 

  4. L.R. Lynd, C.H. de Brito Cruz, Science (Washington) 330, 1176 (2010)

    Article  CAS  Google Scholar 

  5. E.A. Davidson, Science 330, 1176 (2010)

    Article  CAS  Google Scholar 

  6. S.C. Lai, M.T. Koper, Phys. Chem. Chem. Phys. 11, 10446 (2009)

    Article  CAS  Google Scholar 

  7. D. Yuan, X. Yuan, W. Zou, F. Zeng, X. Huang, S. Zhou, J. Mater. Chem. 22, 17820 (2012)

    Article  CAS  Google Scholar 

  8. S. Ghosh, A.-L. Teillout, D. Floresyona, P. de Oliveira, A. Hagège, H. Remita, Int. J. Hydrog. Energy 40, 4951 (2015)

    Article  CAS  Google Scholar 

  9. F. Vigier, S. Rousseau, C. Coutanceau, J.-M. Leger, C. Lamy, Top. Catal. 40, 111 (2006)

    Article  CAS  Google Scholar 

  10. L. Dong, R.R.S. Gari, Z. Li, M.M. Craig, S. Hou, Carbon 48, 781 (2010)

    Article  CAS  Google Scholar 

  11. R.-S. Juang, C.-T. Hsieh, J.-Q. Hsiao, H.-T. Hsiao, D.-Y. Tzou, M.M. Huq, J. Power Sources 275, 845 (2015)

    Article  CAS  Google Scholar 

  12. L. Wang, M. Bevilacqua, J. Filippi, P. Fornasiero, M. Innocenti, A. Lavacchi, A. Marchionni, H. Miller, F. Vizza, Appl. Catal. B Environ. 165, 185 (2015)

    Article  CAS  Google Scholar 

  13. J.M. Jacob, P.G. Corradini, E. Antolini, N.A. Santos, J. Perez, Appl. Catal. B Environ. 165, 176 (2015)

    Article  CAS  Google Scholar 

  14. R.B. Kutz, B. Braunschweig, P. Mukherjee, R.L. Behrens, D.D. Dlott, A. Wieckowski, J. Catal. 278, 181 (2011)

    Article  CAS  Google Scholar 

  15. K.-H. Ye, S.-A. Zhou, X.-C. Zhu, C.-W. Xu, P.K. Shen, Electrochim. Acta 90, 108 (2013)

    Article  CAS  Google Scholar 

  16. A.Y. Tsivadze, M. Tarasevich, V. Andreev, V. Bogdanovskaya, Russ. J. Gen. Chem. 77, 783 (2007)

    Article  CAS  Google Scholar 

  17. J. Zhang, Y. Mo, M. Vukmirovic, R. Klie, K. Sasaki, R. Adzic, J. Phys. Chem. B 108, 10955 (2004)

    Article  CAS  Google Scholar 

  18. F. Ksar, G. Surendran, L. Ramos, B. Keita, L. Nadjo, E. Prouzet, P. Beaunier, A. Hagege, F. Audonnet, H. Remita, Chem. Mater. 21, 1612 (2009)

    Article  CAS  Google Scholar 

  19. Y.-J. Wang, D.P. Wilkinson, J. Zhang, Chem. Rev. 111, 7625 (2011)

    Article  CAS  Google Scholar 

  20. S. Sharma, B.G. Pollet, J. Power Sources 208, 96 (2012)

    Article  CAS  Google Scholar 

  21. S. Biallozor, A. Kupniewska, V. Jasulaitene, Fuel Cells 3, 8 (2003)

    Article  CAS  Google Scholar 

  22. Z. Chen, L. Xu, W. Li, M. Waje, Y. Yan, Nanotechnology 17, 5254 (2006)

    Article  CAS  Google Scholar 

  23. S. Patra, N. Munichandraiah, Langmuir 25, 1732 (2008)

    Article  Google Scholar 

  24. M. Zhiani, B. Rezaei, J. Jalili, Int. J. Hydrog. Energy 35, 9298 (2010)

    Article  CAS  Google Scholar 

  25. K. Dutta, S. Das, D. Rana, P.P. Kundu, Polym. Rev. 55, 1 (2015)

    Article  CAS  Google Scholar 

  26. K. Dutta, S. Das, P.P. Kundu, J. Membr. Sci. 468, 42 (2014)

    Article  CAS  Google Scholar 

  27. T. Maiyalagan, J. Power Sources 179, 443 (2008)

    Article  CAS  Google Scholar 

  28. B. Vercelli, G. Zotti, A. Berlin, J. Phys. Chem. C 113, 3525 (2009)

    Article  CAS  Google Scholar 

  29. P. Xu, X. Han, B. Zhang, Y. Du, H.-L. Wang, Chem. Soc. Rev. 43, 1349 (2014)

    Article  CAS  Google Scholar 

  30. W.M. Millán, T.T. Thompson, L. Arriaga, M.A. Smit, Int. J. Hydrog. Energy 34, 694 (2009)

    Article  Google Scholar 

  31. F.-J. Liu, L.-M. Huang, T.-C. Wen, A. Gopalan, Synth. Met. 157, 651 (2007)

    Article  CAS  Google Scholar 

  32. M.H. Seo, E.J. Lim, S.M. Choi, H.J. Kim, W.B. Kim, Top. Catal. 53, 678 (2010)

    Article  CAS  Google Scholar 

  33. M.H. Seo, E.J. Lim, S.M. Choi, S.H. Nam, H.J. Kim, W.B. Kim, Int. J. Hydrog. Energy 36, 11545 (2011)

    Article  CAS  Google Scholar 

  34. N. Du, C. Wong, M. Feurstein, O.A. Sadik, C. Umbach, B. Sammakia, Langmuir 26, 14194 (2010)

    Article  CAS  Google Scholar 

  35. I. Yazgan, N. Du, R. Congdon, V. Okello, O.A. Sadik, J. Membr. Sci. 472, 261 (2014)

    Article  CAS  Google Scholar 

  36. O. Sadik, N. Du, V. Kariuki, V. Okello, V. Bushlyar, ACS Sustainable Chem. Eng. 2, 1707 (2014)

    Article  CAS  Google Scholar 

  37. M.A. Omole, V.A. Okello, V. Lee, L. Zhou, O.A. Sadik, C. Umbach, B. Sammakia, ACS Catal. 1, 139 (2011)

    Article  CAS  Google Scholar 

  38. V.M. Kariuki, I. Yazgan, A. Akgul, A. Kowal, M. Parlinska, O.A. Sadik, Environ. Sci.: Nano 2, 518 (2015)

    CAS  Google Scholar 

  39. V. M. Kariuki, S. A. Fasih-Ahmad, F. J. Osonga and O. A. Sadik, Analyst. (2016)

  40. N.M. Noah, M. Omole, S. Stern, S. Zhang, O.A. Sadik, E.H. Hess, J. Martinovic, P.G. Baker, E.I. Iwuoha, Anal. Biochem. 428, 54 (2012)

    Article  CAS  Google Scholar 

  41. O.A. Sadik, S.K. Mwilu, A. Aluoch, Electrochim. Acta 55, 4287 (2010)

    Article  CAS  Google Scholar 

  42. V.C. Diculescu, A.-M. Chiorcea-Paquim, O. Corduneanu, A.M. Oliveira-Brett, J. Solid State Electrochem. 11, 887 (2007)

    Article  CAS  Google Scholar 

  43. M.I. Prodromidis, E.M. Zahran, A.G. Tzakos, L.G. Bachas, Int. J. Hydrog. Energy 40, 6745 (2015)

    Article  CAS  Google Scholar 

  44. G. Chang, Y. Luo, W. Lu, X. Qin, A.M. Asiri, A.O. Al-Youbi, X. Sun, Am. J. Nanotechnol. 4, 1 (2013)

    Article  Google Scholar 

  45. M. Grdeń, M. Łukaszewski, G. Jerkiewicz, A. Czerwiński, Electrochim. Acta 53, 7583 (2008)

    Article  Google Scholar 

  46. J. Prabhuram, R. Manoharan, H. Vasan, J. Appl. Electrochem. 28, 935 (1998)

    Article  CAS  Google Scholar 

  47. Z. Liang, T. Zhao, J. Xu, L. Zhu, Electrochim. Acta 54, 2203 (2009)

    Article  CAS  Google Scholar 

  48. C. Bianchini, P.K. Shen, Chem. Rev. 109, 4183 (2009)

    Article  CAS  Google Scholar 

  49. N. Li, Y.-X. Zeng, S. Chen, C.-W. Xu, P.-K. Shen, Int. J. Hydrog. Energy 39, 16015 (2014)

    Article  CAS  Google Scholar 

  50. J.F. Gomes, K. Bergamaski, M.F. Pinto, P.B. Miranda, J. Catal. 302, 67 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Science Foundation (DMR 1007900) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omowunmi A. Sadik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kariuki, V.M., Zhang, J., Parlinska, M. et al. 3D π-Conjugated Poly(amic) Acid Polymer as Support Matrices for Ethanol Electro-Oxidation on Palladium and Platinum Catalysts. Electrocatalysis 7, 317–325 (2016). https://doi.org/10.1007/s12678-016-0307-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0307-0

Keywords

Navigation