Skip to main content

Advertisement

Log in

Biomedical Assessment of Silver Nanoparticles Derived from L-Aspartic Acid Against Breast Cancer Cell Lines and Bacteria Strains

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Biomolecules such as L-aspartic acid can be well-reducing and capping agents to produce metal nanoparticles with unique bioapplications. Silver nanoparticles (AgNPs) were synthesized using L-aspartic acid and evaluated as antibacterial and anticancer agents. The L-aspartic acid-AgNPs were characterized by utilizing spectroscopic instruments. Ultraviolet–visible (UV–Vis) spectroscopy gave peaks at 416 nm. Also, based on Fourier transform infrared spectroscopy (FTIR) analyses, it was determined that there are different functional groups of L-aspartic acid, namely, amino groups (-NH2), carboxylic acids (-COOH), and R-groups (side chains), that are responsible for bioreduction of Ag salt and the production of AgNPs. According to transmission electron microscopy (TEM), AgNPs are almost spherical in shape and have a nanoscale size of 11.3 nm. X-ray diffraction (XRD) study revealed a distinctive diffraction peak indicating crystalline nanoparticle formation, which agrees with AgNPs’ spherical structure. Field emission scanning electron microscopy (FE-SEM) was carried out with the energy-dispersive X-ray spectroscopy (EDX) analysis to determine the elemental composition of biosynthesized AgNPs, which included silver, oxygen, and carbon. Dynamic light scattering (DLS) was designated with a hydrodynamic radius of 109 nm, polydispersity (PdI) is good at 0.266, and a Z-potential of − 14.5 mV indicates good stability. AgNPs showed antibacterial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli). AgNPs have cytotoxicity 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against breast cancer MCF-7 cell line, half-maximal inhibitory concentration (IC50) of 1159.6 µg/mL, and genotoxicity by comet assay, emphasizing apoptosis cells through cell cycle flow cytometry. Biogenic nano-formulations of L-aspartic acid-AgNPs possess antibacterial and anticancer therapeutic applications because they are safe, cost-effective, and scalable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available within the article.

References

  1. Mickymaray, S., Al Aboody, M. S., Eraqi, M. M., Alhoqail, W. A., Alothaim, A. S., & Suresh, K. (2023). Biopolymer chitosan surface engineering with magnesium oxide-pluronic-f127-escin nanoparticles on human breast carcinoma cell line and microbial strains. Nanomaterials, 1227, 2079–4991. https://doi.org/10.3390/nano13071227

    Article  Google Scholar 

  2. Yusuf, M. (2019). Silver nanoparticles: Synthesis and applications. Handbook of Ecomaterials, 2343. https://doi.org/10.1007/978-3-319-68255-6_16.

  3. Khosravimelal, S., Chizari, M., Farhadihosseinabadi, B., MoosazadehMoghaddam, M., & Gholipourmalekabadi, M. (2021). Fabrication and characterization of an antibacterial chitosan/silk fibroin electrospun nanofiber loaded with a cationic peptide for wound-dressing application. Journal of Materials Science: Materials in Medicine, 1–11, 0957–4530. https://doi.org/10.1007/s10856-021-06542-6

    Article  Google Scholar 

  4. Yaqoob, A. A., Ahmad, H., Parveen, T., Ahmad, A., Oves, M., Ismail, I. M., Qari, H. A., Umar, K., & Mohamad Ibrahim, M. N. (2020). Recent advances in metal decorated nanomaterials and their various biological applications: A review. Frontiers in chemistry, 341, 2296–2646. https://doi.org/10.3389/fchem.2020.00341

    Article  Google Scholar 

  5. Khandel, P., Shahi, S. K., Soni, D. K., Yadaw, R. K., & Kanwar, L. (2018). Alpinia calcarata: Potential source for the fabrication of bioactive silver nanoparticles. Nano convergence, 1–17, 2196–5404. https://doi.org/10.1186/s40580-018-0167-9

    Article  Google Scholar 

  6. Moodley, J. S., Krishna, S. B. N., Pillay, K., & Govender, P. (2018). Green synthesis of silver nanoparticles from moringa oleifera leaf extracts and its antimicrobial potential. Advances in Natural Sciences: Nanoscience and Nanotechnology, 015011, 2043–6262. https://doi.org/10.1088/2043-6254/aaabb2

    Article  Google Scholar 

  7. Awwad, A. M., Salem, N. M., & Abdeen, A. O. (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International journal of Industrial chemistry, 1–6, 2228–5970. https://doi.org/10.1186/2228-5547-4-29

    Article  Google Scholar 

  8. Rezazadeh, N. H., Buazar, F., & Matroodi, S. (2020). Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles. Sci Rep, 1–13, 2045–2322. https://doi.org/10.1038/s41598-020-76726-7

    Article  Google Scholar 

  9. Jeevanandam, J., Kiew, S. F., Boakye-Ansah, S., Lau, S. Y., Barhoum, A., Danquah, M. K., & Rodrigues, J. (2022). Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale, 2534-2571.https://doi.org/10.1039/D1NR08144F

  10. Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial cells, Nanomedicine, and Biotechnology, 1272–1291, 2169–1401. https://doi.org/10.1080/21691401.2016.1241792

    Article  Google Scholar 

  11. Gardea-Torresdey, J. L., Gomez, E., Peralta-Videa, J. R., Parsons, J. G., Troiani, H., & Jose-Yacaman, M. (2003). Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 1357–1361, 0743–7463. https://doi.org/10.1021/la020835i

    Article  Google Scholar 

  12. Jha, A. K., Prasad, K., & Kulkarni, A. (2009). Synthesis of tio2 nanoparticles using microorganisms. Colloids and surfaces B: Biointerfaces, 226–229, 0927–7765. https://doi.org/10.1016/j.colsurfb.2009.02.007

    Article  Google Scholar 

  13. Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of au, ag, and bimetallic au core–ag shell nanoparticles using neem (azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 496–502, 0021–9797.

    Google Scholar 

  14. Hasan, S. (2015). A review on nanoparticles: Their synthesis and types. Research Journal of Recent Sciences2277, 2502.

  15. Roy, M., Mukherjee, P., Mandal, B. P., Sharma, R. K., Tyagi A. K., & Kale S. P. (2012). Biomimetic synthesis of nanocrystalline silver sol using cysteine: Stability aspects and antibacterial activities. Rsc Advances, 6496–6503. https://doi.org/10.1039/C2RA00785A.

  16. Qin, D., Yang, G., Wang, Y., Zhou, Y., & Zhang, L. (2019). Green synthesis of biocompatible trypsin-conjugated ag nanocomposite with antibacterial activity. Applied Surface Science, 528–536, 0169–4332. https://doi.org/10.1016/j.apsusc.2018.11.057

    Article  Google Scholar 

  17. Selvakannan, P., Swami, A., Srisathiyanarayanan, D., Shirude, P. S., Pasricha, R., Mandale, A. B., & Sastry, M. (2004). Synthesis of aqueous au core− ag shell nanoparticles using tyrosine as a ph-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air− water interface. Langmuir, 7825–7836, 0743–7463. https://doi.org/10.1021/la049258j

    Article  Google Scholar 

  18. Wypij, M., Jędrzejewski, T., Trzcińska-Wencel, J., Ostrowski, M., Rai, M., & Golińska, P. (2021). Green synthesized silver nanoparticles: Antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Frontiers in microbiology, 632505, 1664–302X. https://doi.org/10.3389/fmicb.2021.632505

    Article  Google Scholar 

  19. Bidan, A. K., & Al-Ali, Z. S. A. (2022). Biomedical evaluation of biosynthesized silver nanoparticles by jasminum sambac (l.) aiton against breast cancer cell line, and both bacterial strains colonies. International Journal of Nanoscience, 2250042, 0219-581X. https://doi.org/10.1142/S0219581X22500429

    Article  Google Scholar 

  20. Shankar, S., & Rhim, J.-W. (2015). Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydrate polymers, 353–363, 0144–8617. https://doi.org/10.1016/j.carbpol.2015.05.018

    Article  Google Scholar 

  21. Adelnia, H., Tran, H. D., Little, P. J., Blakey, I., & Ta, H. T. (2021). Poly (aspartic acid) in biomedical applications: From polymerization, modification, properties, degradation, and biocompatibility to applications. ACS Biomaterials Science & Engineering, 2083–2105, 2373–9878. https://doi.org/10.1021/acsbiomaterials.1c00150

    Article  Google Scholar 

  22. Ateeq, B., Farah, M. A., & Ahmad, W. (2005). Detection of DNA damage by alkaline single cell gel electrophoresis in 2, 4-dichlorophenoxyacetic-acid-and butachlor-exposed erythrocytes of clarias batrachus. Ecotoxicology and environmental safety, 348–354, 0147–6513. https://doi.org/10.1016/j.ecoenv.2004.12.011

    Article  Google Scholar 

  23. Essghaier, B., Dridi, R., Mottola, F., Rocco, L., Zid, M. F., & Hannachi, H. (2023). Biosynthesis and characterization of silver nanoparticles from the extremophile plant aeonium haworthii and their antioxidant, antimicrobial and anti-diabetic capacities. Nanomaterials, 100, 2079–4991. https://doi.org/10.3390/nano13010100

    Article  Google Scholar 

  24. Wasilewska, A., Klekotka, U., Zambrzycka, M., Zambrowski, G., Święcicka, I., & Kalska-Szostko, B. (2023). Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis. Food Chemistry, 133960, 0308–8146. https://doi.org/10.1016/j.foodchem.2022.133960

    Article  Google Scholar 

  25. Ammari, H., Deng, Y., & Millien, P. (2016). Surface plasmon resonance of nanoparticles and applications in imaging. Archive for Rational Mechanics and Analysis, 109–153, 0003–9527. https://doi.org/10.1007/s00205-015-0928-0

    Article  MathSciNet  MATH  Google Scholar 

  26. Răcuciu, M., Barbu-Tudoran, L., Oancea, S., Drăghici, O., Morosanu, C., Grigoras, M., Brînză, F., & Creangă, D. E. (2022). Aspartic acid stabilized iron oxide nanoparticles for biomedical applications. Nanomaterials, 1151, 2079–4991. https://doi.org/10.3390/nano12071151

    Article  Google Scholar 

  27. Bunaciu, A. A., Udriştioiu, E. G., & Aboul-Enein, H. Y. (2015). X-ray diffraction: Instrumentation and applications. Critical reviews in analytical chemistry, 289–299, 1040–8347. https://doi.org/10.1080/10408347.2014.949616

    Article  Google Scholar 

  28. Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Advances, 3974-3983https://doi.org/10.1039/C3RA44507K

  29. Ali, I. A. M., Ahmed, A. B., & Al-Ahmed, H. I. (2023). Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin. Sci Rep, 2256, 2045–2322. https://doi.org/10.1038/s41598-023-29412-3

    Article  Google Scholar 

  30. Sadeghi, B., & Gholamhoseinpoor, F. (2015). A study on the stability and green synthesis of silver nanoparticles using ziziphora tenuior (zt) extract at room temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 310–315, 1386–1425. https://doi.org/10.1016/j.saa.2014.06.046

    Article  Google Scholar 

  31. Alharbi, N. S., Alsubhi, N. S., & Felimban, A. I. (2022). Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. Journal of Radiation Research and Applied Sciences, 109–124, 1687–8507. https://doi.org/10.1016/j.jrras.2022.06.012

    Article  Google Scholar 

  32. Guo, Z., Tian, Y., Zhang, D., Wang, T., & Wu, M. (2019). A novel stick-slip based linear actuator using bi-directional motion of micropositioner. Mechanical Systems and Signal Processing, 37–49, 0888–3270. https://doi.org/10.1016/j.ymssp.2019.03.025

    Article  Google Scholar 

  33. Bamal, D., Singh, A., Chaudhary, G., Kumar, M., Singh, M., Rani, N., Mundlia, P., & Sehrawat, A. R. (2021). Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: An updated review. Nanomaterials, 2086, 2079–4991. https://doi.org/10.3390/nano11082086

    Article  Google Scholar 

  34. Harwood, C. R., Mouillon, J.-M., Pohl, S., & Arnau, J. (2018). Secondary metabolite production and the safety of industrially important members of the bacillus subtilis group. FEMS Microbiology Reviews, 721–738, 0168–6445. https://doi.org/10.1093/femsre/fuy028

    Article  Google Scholar 

  35. Alzubaidi, A. K., Al-Kaabi, W. J., Ali, A. A., Albukhaty, S., Al-Karagoly, H., Sulaiman, G. M., Asiri, M., & Khane, Y. (2023). Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and antioxidant activities. Applied Sciences, 2182, 2076–3417.

    Google Scholar 

  36. Khane, Y., Benouis, K., Albukhaty, S., Sulaiman, G. M., Abomughaid, M. M., Al, Ali A., Aouf, D., Fenniche, F., Khane, S., & Chaibi, W. (2022). Green synthesis of silver nanoparticles using aqueous citrus limon zest extract: Characterization and evaluation of their antioxidant and antimicrobial properties. Nanomaterials, 2013, 2079–4991. https://doi.org/10.3390/nano12122013

    Article  Google Scholar 

  37. Nayak, S., Bhat, M. P., Udayashankar, A., Lakshmeesha, T., Geetha, N., & Jogaiah, S. (2020). Biosynthesis and characterization of dillenia indica-mediated silver nanoparticles and their biological activity. Applied Organometallic Chemistry, e5567, 0268–2605. https://doi.org/10.1002/aoc.5567

    Article  Google Scholar 

  38. Balasubramanian, S., Kala, S. M. J., & Pushparaj, T. L. (2020). Biogenic synthesis of gold nanoparticles using jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities. Journal of Drug Delivery Science and Technology, 101620, 1773–2247. https://doi.org/10.1016/j.jddst.2020.101620

    Article  Google Scholar 

  39. Abd-Elhady, H. M., Ashor, M. A., Hazem, A., Saleh, F. M., Selim, S., El Nahhas, N., Abdel-Hafez, S. H., Sayed, S., & Hassan, E. A. (2022). Biosynthesis and characterization of extracellular silver nanoparticles from streptomyces aizuneusis: Antimicrobial, anti larval, and anticancer activities. Molecules, 212, 1420–3049. https://doi.org/10.3390/molecules27010212

    Article  Google Scholar 

  40. Biswal, A. K., & Misra, P. K. (2020). Biosynthesis and characterization of silver nanoparticles for prospective application in food packaging and biomedical fields. Materials Chemistry and Physics, 123014, 0254–0584. https://doi.org/10.1016/j.matchemphys.2020.123014

    Article  Google Scholar 

  41. Nayak, B., & Misra, P. K. (2019). Recognition of the surface characteristics and electrical properties of a nanocrystalline hydroxyapatite synthesized from pila globosa shells for versatile applications. Materials Chemistry and Physics, 187–196, 0254–0584. https://doi.org/10.1016/j.matchemphys.2019.03.068

    Article  Google Scholar 

  42. Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences, 1422–0067. https://doi.org/10.3390/ijms22137202.

  43. Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L., Li, Q., & Chu, C. H. (2020). The antibacterial mechanism of silver nanoparticles and its application in dentistry. International journal of nanomedicine, 2555–2562, 1178–2013. https://doi.org/10.2147/IJN.S246764

    Article  Google Scholar 

  44. Tang, S., & Zheng, J. (2018). Antibacterial activity of silver nanoparticles: Structural effects. Advanced healthcare materials, 1701503, 2192–2640.

    Google Scholar 

  45. Swamy, P. S., Bhat, M., & Nayaka, S. (2022). Amycolatopsis sp. Strain mn235945 mediated biosynthesis of silver nanoparticles: Characterization, antimicrobial and anticancer activity against hela and mcf-7 cell lines. Indian Journal of Pharmaceutical Sciences84(5). https://doi.org/10.36468/pharmaceutical-sciences.1012

  46. Shashiraj, K. N., Hugar, A., Kumar, R. S., Rudrappa, M., Bhat, M. P., Almansour, A. I., Perumal, K., & Nayaka, S. (2023). Exploring the antimicrobial, anticancer, and apoptosis inducing ability of biofabricated silver nanoparticles using lagerstroemia speciosa flower buds against the human osteosarcoma (mg-63) cell line via flow cytometry. Bioengineering, 821, 2306–5354. https://doi.org/10.3390/bioengineering10070821

    Article  Google Scholar 

  47. Karimi, J., & Mohsenzadeh, S. (2015). Rapid, green, and eco-friendly biosynthesis of copper nanoparticles using flower extract of aloe vera.Synthesis and Reactivity in Inorganic. Metal-Organic, and Nano-Metal Chemistry, 895–898, 1553–3174.

    Google Scholar 

  48. Akhtar, S., Asiri, S., Khan, F. A., Gunday, S., Iqbal, A., Alrushaid, N., Labib, O., Deen, G., & Henari, F. (2022). Formulation of gold nanoparticles with hibiscus and curcumin extracts induced anti-cancer activity. Arabian Journal of Chemistry, 103594, 1878–5352. https://doi.org/10.1016/j.arabjc.2021.103594

    Article  Google Scholar 

  49. Kalaiselvan, V., & Rajasekaran, A. (2009). Biosynthesis of silver nanoparticles from aspergillus niger and evaluation of its wound healing activity in experimental rat model. International Journal of PharmTech Research, 4, 1523–1529.

  50. Asaduzzaman, M., & Yeasmin, T. (2006). Antineoplastic properties of phyto-synthesized silver nanoparticles from hibiscus sabdariffa linn. Bark extract. https://doi.org/10.1074/jbc.M605937200

    Article  Google Scholar 

  51. Almofti, M. R., Ichikawa, T., Yamashita, K., Terada, H., & Shinohara, Y. (2003). Silver ion induces a cyclosporine a-insensitive permeability transition in rat liver mitochondria and release of apoptogenic cytochrome c. Journal of Biochemistry, 43–49, 1756–2651. https://doi.org/10.1093/jb/mvg111

    Article  Google Scholar 

  52. Foldbjerg, R., Dang, D. A., & Autrup, H. (2011). Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, a549. Archives of Toxicology, 743–750, 1432–0738. https://doi.org/10.1007/s00204-010-0545-5

    Article  Google Scholar 

  53. Dos Santos, C. A., Seckler, M. M., Ingle, A. P., Gupta, I., Galdiero, S., Galdiero, M., Gade, A., & Rai, M. (2014). Silver nanoparticles: Therapeutical uses, toxicity, and safety issues. Journal of pharmaceutical sciences, 1931–1944, 0022–3549. https://doi.org/10.1002/jps.24001

    Article  Google Scholar 

  54. El-Naggar, N.E.-A., Hussein, M. H., & El-Sawah, A. A. (2018). Phycobiliprotein-mediated synthesis of biogenic silver nanoparticles, characterization, in vitro and in vivo assessment of anticancer activities. Scientific Reports, 8925, 2045–2322. https://doi.org/10.1038/s41598-018-27276-6

    Article  Google Scholar 

  55. Hamouda, R. A., Hussein, M. H., Abo-Elmagd, R. A., & Bawazir, S. S. (2019). Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium oscillatoria limnetica. Scientific Reports, 13071, 2045–2322. https://doi.org/10.1038/s41598-019-49444-y

    Article  Google Scholar 

  56. Dey, S., Fageria, L., Sharma, A., Mukherjee, S., Pande, S., Chowdhury, R., & Chowdhury, S. (2022). Silver nanoparticle-induced alteration of mitochondrial and er homeostasis affects human breast cancer cell fate. Toxicology Reports, 1977–1984, 2214–7500. https://doi.org/10.1016/j.toxrep.2022.10.017

    Article  Google Scholar 

  57. Ranjitham, A. M., Suja, R., Caroling, G., & Tiwari, S. (2013). In vitro evaluation of antioxidant, antimicrobial, anticancer activities and characterisation of brassica oleracea. Var. Bortrytis. L synthesized silver nanoparticles. International Journal of Pharmacy and Pharmaceutical Sciences5(4), 239–251.

  58. El-Naggar, N.E.-A., Hussein, M. H., & El-Sawah, A. A. (2017). Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity. Scientific Reports, 10844, 2045–2322. https://doi.org/10.1038/s41598-017-11121-3

    Article  Google Scholar 

  59. Sulaiman, G. M., Tawfeeq, A. T., & Naji, A. S. (2018). Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artificial Cells, Nanomedicine, and Biotechnology, 1215–1229, 2169–1401. https://doi.org/10.1080/21691401.2017.1366335

    Article  Google Scholar 

  60. Chaturvedi, V. K., Yadav, N., Rai, N. K., Ellah, N. H. A., Bohara, R. A., Rehan, I. F., Marraiki, N., Batiha, G.E.-S., Hetta, H. F., & Singh, M. P. (2020). Pleurotus sajor-caju-mediated synthesis of silver and gold nanoparticles active against colon cancer cell lines: A new era of herbonanoceutics. Molecules, 3091, 1420–3049. https://doi.org/10.3390/molecules25133091

    Article  Google Scholar 

  61. Oladipo, A. O., Unuofin, J. O., Lebelo, S. L., & Msagati, T. A. M. (2022). Phytochemical-stabilized platinum-decorated silver nanocubes inhibit adenocarcinoma cells and enhance antioxidant effects by promoting apoptosis via cell cycle arrest. Pharmaceutics, 2541, 1999–4923. https://doi.org/10.3390/pharmaceutics14112541

    Article  Google Scholar 

  62. Mokhtar, F. A., Selim, N. M., Elhawary, S. S., Abd El Hadi, S. R., Hetta, M. H., Albalawi, M. A., Shati, A. A., Alfaifi, M. Y., Elbehairi, S. E. I., & Fahmy, L. I. (2022). Green biosynthesis of silver nanoparticles using annona glabra and annona squamosa extracts with antimicrobial, anticancer, apoptosis potentials, assisted by in silico modeling, and metabolic profiling. Pharmaceuticals, 1354, 1424–8247. https://doi.org/10.3390/ph15111354

    Article  Google Scholar 

  63. Austin, L. A., Kang, B., Yen, C.-W., & El-Sayed, M. A. (2011). Nuclear targeted silver nanospheres perturb the cancer cell cycle differently than those of nanogold. Bioconjugate chemistry, 2324–2331, 1043–1802. https://doi.org/10.1021/bc200386m

    Article  Google Scholar 

  64. Noorbazargan, H., Amintehrani, S., Dolatabadi, A., Mashayekhi, A., Khayam, N., Moulavi, P., Naghizadeh, M., Mirzaie, A., Mirzaei Rad, F., & Kavousi, M. (2021). Anti-cancer & anti-metastasis properties of bioorganic-capped silver nanoparticles fabricated from juniperus chinensis extract against lung cancer cells. AMB Express, 61, 2191–0855. https://doi.org/10.1186/s13568-021-01216-6

    Article  Google Scholar 

  65. Das, S., Das, J., Samadder, A., Bhattacharyya, S. S., Das, D., & Khuda-Bukhsh, A. R. (2013). Biosynthesized silver nanoparticles by ethanolic extracts of phytolacca decandra, gelsemium sempervirens, hydrastis canadensis and thuja occidentalis induce differential cytotoxicity through g2/m arrest in a375 cells. Colloids and surfaces B: Biointerfaces, 325–336, 0927–7765.

    Google Scholar 

  66. Zhang, G., Zhu, Y., Wang, Y., Wei, D., Wu, Y., Zheng, L., Bai, H., Xiao, H., & Zhang, Z. (2019). Ph/redox sensitive nanoparticles with platinum (iv) prodrugs and doxorubicin enhance chemotherapy in ovarian cancer. Rsc Advances, 20513-20517.https://doi.org/10.1039/C9RA04034J.

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZS conceived and designed the study. She contributed to the writing and interpreting of the results of the manuscript. SH synthesized and purified the AgNPs. She contributed to interpreting the results and writing the initial draft of the manuscript. AA characterized the AgNPs and contributed to interpreting the results. All authors participated in all manuscript requirements to produce a final version after being read and agreed upon by everyone.

Corresponding author

Correspondence to Zainab Shakir Abdullah Al-Ali.

Ethics declarations

Ethical Approval

None.

Competing Interests

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Majeed, S.H.A., Al-Ali, Z.S.A. & Turki, A.A. Biomedical Assessment of Silver Nanoparticles Derived from L-Aspartic Acid Against Breast Cancer Cell Lines and Bacteria Strains. BioNanoSci. 13, 1833–1848 (2023). https://doi.org/10.1007/s12668-023-01198-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01198-8

Keywords

Navigation