Skip to main content
Log in

Characterization of Biosynthesized Silver Nanoparticles Using Lactobacillus rhamnosus GG and its In Vitro Assessment Against Colorectal Cancer Cells

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Silver nanoparticles are the most desirable nanoparticles broadly used in diverse fields. This study intends to investigate the anticancer properties of synthesized silver/Lactobacillus rhamnosus GG nanoparticles (Ag-LNPs) as a reducing and stabilizing agent in the synthesis process. To prepare silver/Lactobacillus rhamnosus GG nanoparticles, 1 mg/ml cell lysate of Lactobacillus rhamnosus GG and 1 mM silver nitrate solution were mixed and incubated for 72 h. XRD, FTIR, and TEM methods were used for nanoparticle characterization. MTT assay and annexin/PI staining were employed to analyze the toxicity and apoptotic cells levels of Ag-LNPs, respectively. TEM showed that these nanoparticles are spherical shaped about 233 nm in size. FTIR spectroscopy demonstrated that Ag-LNPs were functionalized with biomolecules. XRD pattern showed high purity and face-centered crystal structure of Ag-LNPs. MTT assay revealed that the percentages of HT-29 live cells significantly reduced in the high concentration of Ag-LNPs. Annexin/PI staining showed that these nanoparticles could lead HT-29 cells to apoptosis. This study showed the new Ag-LNP-synthesizing method using Lactobacillus rhamnosus GG as a cost-effective and efficient approach. Also, it showed that these nanoparticles can be considered as a potential active agent for biomedical applications and drug delivery due to their anticancer activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39. https://doi.org/10.1590/S1516-14392009000100002

    Article  CAS  Google Scholar 

  2. Hamzeh M, Sunahara GI (2013) In vitro cytotoxicity and genotoxicity studies of titanium dioxide (TiO2) nanoparticles in Chinese hamster lung fibroblast cells. Toxicol in Vitro 27(2):864–873. https://doi.org/10.1016/j.tiv.2012.12.018

    Article  CAS  PubMed  Google Scholar 

  3. Akter M, Sikder MT, Rahman MM, Ullah AKMA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M (2017) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16. https://doi.org/10.1016/j.jare.2017.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Govender P, Adam JK, Naidu KSB (2015) Biomedical applications and toxicity of nanosilver: a review. Med Technol SA 29(2):13–19

    Google Scholar 

  5. Edwards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49(2):147–152. https://doi.org/10.1111/j.1472-765X.2009.02648.x

    Article  CAS  PubMed  Google Scholar 

  6. Simon-Deckers A, Gouget B, Mayne-L’Hermite M, Herlin-Boime N, Reynaud C, Carriere M (2008) In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicol 253(1–3):137–146. https://doi.org/10.1016/j.tox.2008.09.007

    Article  CAS  Google Scholar 

  7. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30. https://doi.org/10.3322/caac.21387

    Article  PubMed  Google Scholar 

  8. Banna GL, Collovà E, Gebbia V, Lipari H, Giuffrida P, Cavallaro S, Condorelli R, Buscarino C, Tralongo P, Ferraù F (2010) Anticancer oral therapy: emerging related issues. Cancer Treat Rev 36(8):595–605. https://doi.org/10.1016/j.ctrv.2010.04.005

    Article  PubMed  Google Scholar 

  9. Khani S, Hosseini HM, Taheri M, Nourani MR, Imani Fooladi AA (2012) Probiotics as an alternative strategy for prevention and treatment of human diseases: a review. Inflamm Allergy Drug Targets 11(2):79–89. https://doi.org/10.2174/187152812800392832

    Article  CAS  PubMed  Google Scholar 

  10. Imani Fooladi AA, Mahmoodzadeh Hosseini H, Nourani MR, Khani S, Alavian SM (2013) Probiotic as a novel treatment strategy against liver disease. Hepat Mon 13(2):e7521. https://doi.org/10.5812/hepatmon.7521

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guandalini S (2011) Probiotics for prevention and treatment of diarrhea. J Clin Gastroenterol 45(Suppl 1):S149–S153. https://doi.org/10.1097/MCG.0b013e3182257e98

    Article  PubMed  Google Scholar 

  12. Ashraf R, Shah NP (2014) Immune system stimulation by probiotic microorganisms. Crit Rev Food Sci Nutr 54(7):938–956. https://doi.org/10.1080/10408398.2011.619671

    Article  CAS  PubMed  Google Scholar 

  13. Gill HS, Rutherfurd KJ, Prasad J, Gopal PK (2000) Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br J Nutr 83(2):167–176. https://doi.org/10.1017/S0007114500000210

    Article  CAS  PubMed  Google Scholar 

  14. El-Chaghaby GA, Ahmad AF (2011) Biosynthesis of silver nanoparticles using Pistacia lentiscus leaves extract and investigation of their antimicrobial effect. Orient J Chem 27(3):929–936

    CAS  Google Scholar 

  15. Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, Dhanaraj SA (2011) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15(2):113–120. https://doi.org/10.1016/j.jscs.2010.06.004

    Article  CAS  Google Scholar 

  16. Mohammed AE, Al-Qahtani A, Al-Mutairi A, Al-Shamri B, Aabed KF (2018) Antibacterial and cytotoxic potential of biosynthesized silver nanoparticles by some plant extracts. Nanomaterials (Basel) 8(6):e382. https://doi.org/10.3390/nano8060382

    Article  CAS  Google Scholar 

  17. Bindhu MR, Umadevi M (2015) Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 135:373–378. https://doi.org/10.1016/j.saa.2014.07.045

    Article  CAS  PubMed  Google Scholar 

  18. Sre PRR, Reka M, Poovazhagi R, Kumar MA, Murugesan K (2015) Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim Acta A Mol Biomol Spectrosc 135:1137–1144. https://doi.org/10.1016/j.saa.2014.08.019

    Article  CAS  Google Scholar 

  19. Singh G, Babele PK, Shahi SK, Sinha RP, Tyagi MB, Kumar A (2014) Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of its antibacterial and antitumor activity. J Microbiol Biotechnol 24(10):1354–1367. https://doi.org/10.4014/jmb.1405.05003

    Article  CAS  PubMed  Google Scholar 

  20. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  21. Nagajyothi PC, Cha SJ, Yang IJ, Sreekanth TVM, Kim KJ, Shin HM (2015) Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J Photochem Photobiol B 146(5):10–17. https://doi.org/10.1016/j.jphotobiol.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  22. Sadeghi B, Rostami A, Momeni SS (2015) Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 134(1):326–332. https://doi.org/10.1016/j.saa.2014.05.078

    Article  CAS  PubMed  Google Scholar 

  23. Manikandan R, Manikandan B, Raman T, Arunagirinathan K, Prabhu NM, Basu MJ, Perumal M, Palanisamy S, Munusamy A (2015) Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochim Acta A Mol Biomol Spectrosc 138(1):120–129. https://doi.org/10.1016/j.saa.2014.10.043

    Article  CAS  PubMed  Google Scholar 

  24. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological conceptsand future applications. J Nanopart Res 1093:507–517. https://doi.org/10.1007/s11051-007-9275-x

    Article  CAS  Google Scholar 

  25. Torabian P, Ghandehari F, Fatemi M (2018) Biosynthesis of iron oxide nanoparticles by cytoplasmic extracts of bacteria lactobacillus casei. Asian J Green Chem 2:181–188. https://doi.org/10.22034/ajgc.2018.57914

    Article  Google Scholar 

  26. Rajesh S, Dharanishanthi V, Vinoth Kanna A (2015) Antibacterial mechanism of biogenic silver nanoparticles ofLactobacillus acidophilus. J Exp Nanosci 10(15):1143–1152. https://doi.org/10.1080/17458080.2014.985750

    Article  CAS  Google Scholar 

  27. Nithya R, Ragunathan R (2012) Synthesis of silver nanoparticles using a probiotic microbe and its antibacterial effect against multidrug resistant bacteria. Afr J Biotechnol 11(49):11013–11021. https://doi.org/10.5897/AJB12.439

    Article  CAS  Google Scholar 

  28. Xu C, Guo Y, Qiao L, Ma L, Cheng Y, Roman A (2018) Biogenic synthesis of novel functionalized selenium nanoparticles by Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by Enterotoxigenic Escherichia coli K88. Front Microbiol 9(1129):1–13. https://doi.org/10.3389/fmicb.2018.01129

    Article  Google Scholar 

  29. Markus J, Mathiyalagan R, Kim YJ, Abbai R, Singh P, Ahn S, Perez ZEJ, Hurh J, Yang DC (2016) Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51(T) isolated from Korean kimchi. Enzym Microb Technol 95:85–93. https://doi.org/10.1016/j.enzmictec.2016.08.018

    Article  CAS  Google Scholar 

  30. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290. https://doi.org/10.1021/nn800596w

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Ali Mirhosseini or Hamideh Mahmoodzadeh Hosseini.

Ethics declarations

Conflict of Interest

The authors declare that there they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz Mousavi, S.M.A., Mirhosseini, S.A., Rastegar Shariat Panahi, M. et al. Characterization of Biosynthesized Silver Nanoparticles Using Lactobacillus rhamnosus GG and its In Vitro Assessment Against Colorectal Cancer Cells. Probiotics & Antimicro. Prot. 12, 740–746 (2020). https://doi.org/10.1007/s12602-019-09530-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09530-z

Keywords

Navigation