Skip to main content

Advertisement

Log in

Modern Developments in the Application and Function of Metal/Metal Oxide Nanocomposite–Based Antibacterial Agents

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Significant health issues have lately been brought on by the dramatic increase in pathogenic microbes that are resistant to antibiotics. To manage or fight infections brought on by pathogens, investigators are looking for substitutes for currently used antimicrobial agents. Numerous approaches are being used to create effective antimicrobial agents, with nanotechnology being one of the most significant. Metal/metal oxide nanocomposite–based antibacterial agents work by evading the bacterial defenses against drug resistance and preventing the growth of biofilms or other critical virulence-related operations. Bacterial cell walls and membranes can be penetrated by nanocomposites, which then act by sabotaging crucial molecular processes. Nanocomposite-based antibacterial agents may exhibit synergy when used in conjunction with the proper antibiotics and aid in halting the growing global emergency of bacterial resistance. Moreover, polymer-derived nanocomposites facilitate the creation of a diverse range of healthcare equipment because of properties like improved biodegradability and biocompatibility. Once nanocomposites are incorporated, packed, or covered into various materials, they have antibacterial applications ranging from medicinal and surgical instruments to antimicrobial artificial fabrics. This review study covers the antibacterial properties of nanocomposites, developments in the understanding of their mechanism of action, and promising applications of nanocomposite-based antibacterial agents in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Çakıcı, T., Özdal, M., Kundakcı, M., Kayalı, R. (2019). ZnSe and CuSe NP’s by microbial green synthesis method and comparison of I-V characteristics of Au/ZnSe/p-Si/Al and Au/CuSe/p-Si/Al structures. Materials Science in Semiconductor Processing, 103, 104610. https://doi.org/10.1016/j.mssp.2019.104610

  2. Mustafa, Y. F., Bashir, M. K., Oglah, M. K., Khalil, R. R., & Mohammed, E. T. (2021). Bioactivity of some natural and semisynthetic coumarin derived compounds. NeuroQuantology, 19, 129–138. https://doi.org/10.14704/nq.2021.19.6.NQ21078

    Article  Google Scholar 

  3. Makowski, M., Silva, Í. C., Do Amaral, C. P., Gonçalves, S., & Santos, N. C. (2019). Advances in lipid and metal nanoparticles for antimicrobial peptide delivery. Pharmaceutics, 11, 588. https://doi.org/10.3390/pharmaceutics11110588

    Article  Google Scholar 

  4. Gautham, M., Spicer, N., Chatterjee, S., & Goodman, C. (2021). What are the challenges for antibiotic stewardship at the community level? An analysis of the drivers of antibiotic provision by informal healthcare providers in rural India. Social Science & Medicine, 275, 113813. https://doi.org/10.1016/j.socscimed.2021.113813

    Article  Google Scholar 

  5. Hutchings, M. I., Truman, A. W., & Wilkinson, B. (2020). ScienceDirect Antibiotics : Past, present and future. Current Opinion in Microbiology, 51, 72–80. https://doi.org/10.1016/j.mib.2019.10.008

    Article  Google Scholar 

  6. Jasim, S. A., Hadi, J. M., Opulencia, M. J. C., et al. (2022). MXene/metal and polymer nanocomposites: preparation, properties, and applications. Journal of Alloys and Compounds, 917, 165404. https://doi.org/10.1016/j.jallcom.2022.165404

    Article  Google Scholar 

  7. Hemeg, H. A. (2017). Nanomaterials for alternative antibacterial therapy. International Journal of Nanomedicine, 12, 8211–8225. https://doi.org/10.2147/IJN.S132163

    Article  Google Scholar 

  8. Paunova-Krasteva, T., Hemdan, B. A., Dimitrova, P. D., et al. (2022). Hybrid chitosan/CaO-based nanocomposites doped with plant extracts from Azadirachta indica and Melia azedarach: Evaluation of antibacterial and antibiofilm activities. Bionanoscience. https://doi.org/10.1007/s12668-022-01047-0

    Article  Google Scholar 

  9. Abou Hammad, A. B., El Nahwary, A. M., Hemdan, B. A., & Abia, A. L. K. (2020). Nanoceramics and novel functionalized silicate-based magnetic nanocomposites as substitutional disinfectants for water and wastewater purification. Environmental Science and Pollution Research, 27, 26668–26680. https://doi.org/10.1007/s11356-020-09073-9

    Article  Google Scholar 

  10. El Nahrawy, A. M., Hemdan, B. A., Mansour, A. M., Elzwawy, A., & Abou Hammad, A. B. (2021). Integrated use of nickel cobalt aluminoferrite/Ni2+ nano-crystallites supported with SiO2 for optomagnetic and biomedical applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 274, 2–3. https://doi.org/10.1016/j.mseb.2021.115491

    Article  Google Scholar 

  11. El Nahrawy, A. M., Hemdan, B. A., Mansour, A. M., Elzwawy, A., & AbouHammad, A. B. (2022). Structural and opto-magnetic properties of nickel magnesium copper zircon silicate nano-composite for suppress the spread of foodborne pathogenic bacteria. Silicon, 14, 6645–6660. https://doi.org/10.1007/s12633-021-01295-x

    Article  Google Scholar 

  12. Baptista, P. V., Mccusker, M. P., Carvalho, A., & Ferreira, D. A. (2018). Nano-strategies to fight multidrug resistant bacteria — “a battle of the titans .” Frontiers in Microbiology, 9, 1–26. https://doi.org/10.3389/fmicb.2018.01441

    Article  Google Scholar 

  13. Shanmuganathan, R., Mubarakali, D., & Prabakar, D. (2018). An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles : Green approach. Environmental Science and Pollution Research, 25, 10362–10370. https://doi.org/10.1007/s11356-017-9367-9

    Article  Google Scholar 

  14. Slomberg, D. L., Lu, Y., Broadnax, A. D., Hunter, R. A., Carpenter, A. W., & Schoen, M. H. (2013). Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS Applied Materials & Interfaces, 5, 9322–9329. https://doi.org/10.1021/am402618w

    Article  Google Scholar 

  15. Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle ? A study of the Gram-negative bacterium Escherichia coli. Applied and Environment Microbiology, 73, 1712–1720. https://doi.org/10.1128/AEM.02218-06

    Article  Google Scholar 

  16. Hachem, K., Jasim, S. A., Al-Gazally, M. E., et al. (2022). Adsorption of Pb(II) and Cd(II) by magnetic chitosan-salicylaldehyde Schiff base: Synthesis, characterization, thermal study and antibacterial activity. Journal of the Chinese Chemical Society, 69, 512–521. https://doi.org/10.1002/jccs.202100507

    Article  Google Scholar 

  17. Ramanathan, S., Gopinath, S. C. B., Anbu, P., Lakshmipriya, T., Ha, F., & Lee, C. (2018). Eco-friendly synthesis of Solanum trilobatum extract-capped silver nanoparticles is compatible with good antimicrobial activities. Journal of Molecular Structure, 1160, 80–91. https://doi.org/10.1016/j.molstruc.2018.01.056

    Article  Google Scholar 

  18. Jebir, R. M., & Mustafa, Y. F. (2022). Natural products catalog of allsweet watermelon seeds and evaluation of their novel coumarins as antimicrobial candidates. Journal of Medicinal and Chemical Sciences, 5, 831–847. https://doi.org/10.26655/JMCHEMSCI.2022.5.17

    Article  Google Scholar 

  19. Sharmin, S., Rahaman, M. M., Sarkar, C., Atolani, O., Islam, M. T., & Adeyemi, O. S. (2021). Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study. Heliyon, 7, e06456. https://doi.org/10.1016/j.heliyon.2021.e06456

    Article  Google Scholar 

  20. Leung, Y. H., Xu, X., Ma, A. P. Y., et al. (2016). Toxicity of ZnO and TiO 2 to Escherichia coli cells. Science and Reports, 6, 35243. https://doi.org/10.1038/srep35243

    Article  Google Scholar 

  21. Jebir, R. M., & Mustafa, Y. F. (2022). Novel coumarins isolated from the seeds of Citrullus lanatus as potential antimicrobial agents. Eurasian Chemical Communications, 4, 692–708. https://doi.org/10.22034/ecc.2022.335454.1395

    Article  Google Scholar 

  22. Alshareef, A., Laird, K., & Cross, R. B. M. (2017). Shape-dependent antibacterial activity of silver nanoparticles on Escherichia coli and Enterococcus faecium bacterium. Applied Surface Science, 424, 310–315. https://doi.org/10.1016/j.apsusc.2017.03.176

    Article  Google Scholar 

  23. Mustafa, Y. F., & Abdulaziz, N. T. (2021). Hymecromone and its products as cytotoxic candidates for brain cancer : a brief review. NeuroQuantology, 19, 175–186. https://doi.org/10.14704/nq.2021.19.7.NQ21101

    Article  Google Scholar 

  24. Chupradit, S., Kavitha, M., Suksatan, W., et al. (2022). Morphological control : properties and applications of metal nanostructures. Advances in Materials Science and Engineering, 2022, ID 1971891. https://doi.org/10.1155/2022/1971891

    Article  Google Scholar 

  25. Waheed, S. A., & Mustafa, Y. F. (2022). Benzocoumarin backbone is a multifunctional and affordable scaffold with a vast scope of biological activities. Journal of Medicinal and Chemical Sciences, 5, 703–721. https://doi.org/10.26655/JMCHEMSCI.2022.5.6

    Article  Google Scholar 

  26. Lok, C., Ho, C., Chen, R., et al. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 5, 916–924. https://doi.org/10.1021/pr0504079

    Article  Google Scholar 

  27. Tang, S., & Zheng, J. (2018). Antibacterial activity of silver nanoparticles : Structural effects. Advanced Healthcare Materials, 7, 1701503. https://doi.org/10.1002/adhm.201701503

    Article  Google Scholar 

  28. Jebir, R. M., & Mustafa, Y. F. (2022). Watermelon allsweet : a promising natural source of bioactive products. Journal of Medicinal and Chemical Sciences, 5, 652–666. https://doi.org/10.26655/JMCHEMSCI.2022.5.2

    Article  Google Scholar 

  29. Ahmad, A., Wei, Y., Syed, F., et al. (2017). The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microbial Pathogenesis, 102, 133–142. https://doi.org/10.1016/j.micpath.2016.11.030

    Article  Google Scholar 

  30. Pareek, V., Gupta, R., & Panwar, J. (2018). Materials Science & Engineering C Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action ? A review. Materials Science and Engineering C, 90, 739–749. https://doi.org/10.1016/j.msec.2018.04.093

    Article  Google Scholar 

  31. Mustafa, Y. F. (2021). Classical approaches and their creative advances in the synthesis of coumarins: a brief review. Journal of Medicinal and Chemical Sciences, 4, 612–625. https://doi.org/10.26655/JMCHEMSCI.2021.6.10

    Article  Google Scholar 

  32. Tiwari, S., Jamal, S. B., Hassan, S. S., et al. (2017). Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy : An overview. Frontiers in Microbiology, 8, 1878. https://doi.org/10.3389/fmicb.2017.01878

    Article  Google Scholar 

  33. Mustafa, Y. F. (2023). Synthesis, characterization, and biomedical assessment of novel bisimidazole-coumarin conjugates. Applied Nanoscience, 13, 1907–1918. https://doi.org/10.1007/s13204-021-01872-x

    Article  Google Scholar 

  34. Raya, I., Widjaja, G., Hachem, K., et al. (2021). MnCo2O4/Co3O4 nanocomposites: microwave-assisted synthesis, characterization and photocatalytic performance. Journal of Nanostructures, 11, 728–735. https://doi.org/10.22052/JNS.2021.04.010

    Article  Google Scholar 

  35. Khalil, R. R., Mohammed, E. T., & Mustafa, Y. F. (2022). Evaluation of in vitro antioxidant and antidiabetic properties of Cydonia oblonga seeds’ extracts. Journal of Medicinal and Chemical Sciences, 5, 1048–1058. https://doi.org/10.26655/JMCHEMSCI.2022.6.18

    Article  Google Scholar 

  36. Zadeh, F. A., Bokov, D. O., Salahdin, O. D., et al. (2022). Cytotoxicity evaluation of environmentally friendly synthesis copper/zinc bimetallic nanoparticles on MCF-7 cancer cells. Rendiconti Lincei Scienze Fisiche e Naturali. https://doi.org/10.1007/s12210-022-01064-x

    Article  Google Scholar 

  37. Raya, I., Widjaja, G., Hameed, Z., Abed, M., Kabanov, J. K., & Vladimirovich, O. (2022). Kinetic, isotherm, and thermodynamic studies on Cr (VI) adsorption using cellulose acetate/graphene oxide composite nanofibers. Applied Physics A, 128, 167. https://doi.org/10.1007/s00339-022-05307-4

    Article  Google Scholar 

  38. Mohammed, E. T., Khalil, R. R., & Mustafa, Y. F. (2022). Phytochemical analysis and antimicrobial evaluation of quince seeds’ extracts. Journal of Medicinal and Chemical Sciences, 5, 968–979. https://doi.org/10.26655/JMCHEMSCI.2022.6.10

    Article  Google Scholar 

  39. Mustafa, Y. F., Mohammed, E. T., & Khalil, R. R. (2021). Synthesis, characterization, and anticoagulant activity of new functionalized biscoumarins. Egyptian Journal of Chemistry, 64, 4461–4468. https://doi.org/10.21608/EJCHEM.2021.73699.3641

    Article  Google Scholar 

  40. Mahmood, Z. H., Jarosova, M., Kzar, H. H., et al. (2022). Synthesis and characterization of Co 3 O 4 nanoparticles: Application as performing anode in Li-ion batteries. Journal of the Chinese Chemical Society, 69, 657–662. https://doi.org/10.1002/jccs.202100525

    Article  Google Scholar 

  41. Mustafa, Y. F., Khalil, R. R., & Mohammed, E. T. (2021). Synthesis and antitumor potential of new 7-halocoumarin-4-acetic acid derivatives. Egyptian Journal of Chemistry, 64, 3711–3716. https://doi.org/10.21608/ejchem.2021.68873.3508

    Article  Google Scholar 

  42. Kumar, A., Pandey, A. K., Singh, S. S., Shanker, R., & Dhawan, A. (2011). Engineered ZnO and TiO 2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biology & Medicine, 51, 1872–1881. https://doi.org/10.1016/j.freeradbiomed.2011.08.025

    Article  Google Scholar 

  43. Manzoor, S., Bashir, D. J., Imtiyaz, K., et al. (2021). Biofabricated platinum nanoparticles: Therapeutic evaluation as a potential nanodrug against breast cancer cells and drug-resistant bacteria. RSC Advances, 11, 24900–24916. https://doi.org/10.1039/d1ra03133c

    Article  Google Scholar 

  44. Premanathan, M., Karthikeyan, K., Jeyasubramanian, K., & Manivannan, G. (2011). Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine Nanotechnology, Biology and Medicine, 7, 184–192. https://doi.org/10.1016/j.nano.2010.10.001

    Article  Google Scholar 

  45. Jasim, S. F., & Mustafa, Y. F. (2022). Synthesis, ADME study, and antimicrobial evaluation of novel naphthalene-based derivatives. Journal of Medicinal and Chemical Sciences, 5, 793–807. https://doi.org/10.26655/JMCHEMSCI.2022.5.14

    Article  Google Scholar 

  46. El Nahrawy, A. M., Hemdan, B. A., Abou Hammad, A. B., Othman, A. M., Abouelnaga, A. M., & Mansour, A. M. (2021). Modern template design and biological evaluation of cephradine-loaded magnesium calcium silicate nanocomposites as an inhibitor for nosocomial bacteria in biomedical applications. Silicon, 13, 2979–2991. https://doi.org/10.1007/s12633-020-00642-8

    Article  Google Scholar 

  47. Raza, S., Matuła, K., Karoń, S., Paczesny, J. (2021). Resistance and adaptation of bacteria to non‐antibiotic antibacterial agents: physical stressors, nanoparticles, and bacteriophages. Antibiotics, 10, 435. https://doi.org/10.3390/antibiotics10040435

  48. Liu, C. G., Green, S. I., Min, L., et al. (2020). Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. MBio, 11, 1–19. https://doi.org/10.1128/mBio.01462-20

    Article  Google Scholar 

  49. Paczesny, J., Richter, Ł., Hołyst, R. (2020). Recent progress in the detection of bacteria using bacteriophages: a review. Viruses, 12, 845. https://doi.org/10.3390/v12080845

  50. Lee, N. Y., Ko, W. C., & Hsueh, P. R. (2019). Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Frontiers in Pharmacology, 10, 1–10. https://doi.org/10.3389/fphar.2019.01153

    Article  Google Scholar 

  51. Zhao, Y., & Jiang, X. (2013). Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale, 5, 8340–8350. https://doi.org/10.1039/c3nr01990j

    Article  Google Scholar 

  52. Aabed, K., & Mohammed, A. E. (2021). Synergistic and antagonistic effects of biogenic silver nanoparticles in combination with antibiotics against some pathogenic microbes. Frontiers in Bioengineering and Biotechnology, 9, 1–14. https://doi.org/10.3389/fbioe.2021.652362

    Article  Google Scholar 

  53. Aabed, K., & Mohammed, A. E. (2021). Synergistic and antagonistic effects of biogenic silver nanoparticles in combination with antibiotics against some pathogenic microbes. Frontiers in Bioengineering and Biotechnology, 9, 351–362. https://doi.org/10.3389/fbioe.2021.652362

    Article  Google Scholar 

  54. Zhang, Y., Wang, L., Xu, X., Li, F., & Wu, Q. (2018). Combined systems of different antibiotics with nano-CuO against Escherichia coli and the mechanisms involved. Nanomedicine, 13, 339–351. https://doi.org/10.2217/nnm-2017-0290

    Article  Google Scholar 

  55. Qais, F. A., Shafiq, A., Ahmad, I., Husain, F. M., Khan, R. A., Hassan, I. (2020). Green synthesis of silver nanoparticles using Carum copticum: assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens. Microbial Pathogenesis, 144, 104172. https://doi.org/10.1016/j.micpath.2020.104172

  56. Maruthupandy, M., Rajivgandhi, G. N., Quero, F., & Li, W. J. (2020). Anti-quorum sensing and anti-biofilm activity of nickel oxide nanoparticles against Pseudomonas aeruginosa. Jounal of Environmental Chemical Engineering, 8, 104533. https://doi.org/10.1016/j.jece.2020.104533

    Article  Google Scholar 

  57. Hayat, S., Muzammil, S., Shabana, S., et al. (2019). Quorum quenching: role of nanoparticles as signal jammers in Gram-negative bacteria. Future Microbiology, 14, 61–72. https://doi.org/10.2217/fmb-2018-0257

    Article  Google Scholar 

  58. García-Lara, B., Saucedo-Mora, M. A., Roldán-Sánchez, J. A., et al. (2015). Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Letters in Applied Microbiology, 61, 299–305. https://doi.org/10.1111/lam.12456

    Article  Google Scholar 

  59. Coman, A. N., Mare, A., Tanase, C., Bud, E., & Rusu, A. (2021). Silver-deposited nanoparticles on the titanium nanotubes surface as a promising antibacterial material into implants. Metals (Basel), 11, 1–16. https://doi.org/10.3390/met11010092

    Article  Google Scholar 

  60. Ali, S. G., Ansari, M. A., Khan, H. M., Jalal, M., Mahdi, A. A., & Cameotra, S. S. (2017). Crataeva nurvala nanoparticles inhibit virulence factors and biofilm formation in clinical isolates of Pseudomonas aeruginosa. Journal of Basic Microbiology, 57, 193–203. https://doi.org/10.1002/jobm.201600175

    Article  Google Scholar 

  61. Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37, 177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013

    Article  Google Scholar 

  62. Mirghani, R., Saba, T., Khaliq, H., et al. (2022). Biofilms: Formation, drug resistance and alternatives to conventional approaches. AIMS Microbiology, 8, 240–278. https://doi.org/10.3934/microbiol.2022019

    Article  Google Scholar 

  63. Zhao, Y., Chen, L., Wang, Y., et al. (2021). Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Research, 14, 4417–4441. https://doi.org/10.1007/s12274-021-3417-4

    Article  Google Scholar 

  64. Vestby, L. K., Grønseth, T., Simm, R., Nesse, L. L. (2020). Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics, 9, 59. https://doi.org/10.3390/antibiotics9020059

  65. Qayyum, S., & Khan, A. U. (2016). Nanoparticles: Vs. biofilms: a battle against another paradigm of antibiotic resistance. Medchemcomm, 7, 1479–1498. https://doi.org/10.1039/c6md00124f

    Article  Google Scholar 

  66. Wu, K., Yang, Y., Zhang, Y., Deng, J., & Lin, C. (2015). Antimicrobial activity and cytocompatibility of silver nanoparticles coated catheters via a biomimetic surface functionalization strategy. International Journal of Nanomedicine, 10, 7241–7252. https://doi.org/10.2147/IJN.S92307

    Article  Google Scholar 

  67. Mustafa, Y. F., & Mohammed, N. A. (2021). A promising oral 5-fluorouracil prodrug for lung tumor: Synthesis, characterization and releas. Biochemical and Cellular Archives, 21, 1991–1999.

    Google Scholar 

  68. Singh, P., Pandit, S., Jers, C., Joshi, A. S., Garnæs, J., & Mijakovic, I. (2021). Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Scientific Reports, 11, 1–13. https://doi.org/10.1038/s41598-021-92006-4

    Article  Google Scholar 

  69. Wu, J., Li, F., Hu, X., et al. (2019). Responsive assembly of silver nanoclusters with a biofilm locally amplified bactericidal effect to enhance treatments against multi-drug-resistant bacterial infections. ACS Central Science, 5, 1366–1376. https://doi.org/10.1021/acscentsci.9b00359

    Article  Google Scholar 

  70. Nejres, A. M., Ali, H. K., Behnam, S. P., & Mustafa, Y. F. (2020). Potential effect of ammonium chloride on the optical physical properties of polyvinyl alcohol. Systematic Reviews in Pharmacy, 11, 726–732.

    Google Scholar 

  71. Makabenta, J. M. V., Nabawy, A., Li, C. H., Schmidt-Malan, S., Patel, R., & Rotello, V. M. (2021). Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nature Reviews Microbiology, 19, 23–36. https://doi.org/10.1038/s41579-020-0420-1

    Article  Google Scholar 

  72. Ahmed, B., Syed, A., Ali, K., et al. (2021). Synthesis of gallotannin capped iron oxide nanoparticles and their broad spectrum biological applications. RSC Advances, 11, 9880–9893. https://doi.org/10.1039/d1ra00220a

    Article  Google Scholar 

  73. Miller, K. P., Wang, L., Chen, Y. P., Pellechia, P. J., Benicewicz, B. C., & Decho, A. W. (2015). Engineering nanoparticles to silence bacterial communication. Frontiers in Microbiology, 6, 1–7. https://doi.org/10.3389/fmicb.2015.00189

    Article  Google Scholar 

  74. Roomi, A. B., Widjaja, G., Savitri, D., et al. (2021). SnO2:Au/carbon quantum dots nanocomposites: synthesis, characterization, and antibacterial activity. Journal of Nanostructures, 11, 514–523. https://doi.org/10.22052/JNS.2021.03.009

    Article  Google Scholar 

  75. Gómez-Gómez, B., Arregui, L., Serrano, S., Santos, A., Pérez-Corona, T., & Madrid, Y. (2019). Selenium and tellurium-based nanoparticles as interfering factors in quorum sensing-regulated processes: Violacein production and bacterial biofilm formation. Metallomics, 11, 1104–1114. https://doi.org/10.1039/c9mt00044e

    Article  Google Scholar 

  76. Samanta, S., Singh, B. R., & Adholeya, A. (2017). Intracellular synthesis of gold nanoparticles using an ectomycorrhizal strain EM-1083 of Laccaria fraterna and its nanoanti-quorum sensing potential against Pseudomonas aeruginosa. Indian Journal of Microbiology, 57, 448–460. https://doi.org/10.1007/s12088-017-0662-4

    Article  Google Scholar 

  77. Shah, S., Gaikwad, S., Nagar, S., et al. (2019). Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling, 35, 34–49. https://doi.org/10.1080/08927014.2018.1563686

    Article  Google Scholar 

  78. Mustafa, Y. F. (2019). Synthesis, characterization and preliminary cytotoxic study of sinapic acid and its analogues. Journal of Global Pharma Technology, 11, 1–10.

    Google Scholar 

  79. Jesline, A., John, N. P., Narayanan, P. M., Vani, C., & Murugan, S. (2015). Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Applied Nanoscience, 5, 157–162. https://doi.org/10.1007/s13204-014-0301-x

    Article  Google Scholar 

  80. Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garnæs, J., Mijakovic, I. (2020). A sustainable approach for the green synthesis of silver nanoparticles from Solibacillus isronensis sp. and their application in biofilm inhibition. Molecules, 25, 2783. https://doi.org/10.3390/molecules25122783

  81. Kumaravel, V., Nair, K. M., Mathew, S., et al. (2021). Antimicrobial TiO2 nanocomposite coatings for surfaces, dental and orthopaedic implants. Chemical Engineering Journal, 416, 129071. https://doi.org/10.1016/j.cej.2021.129071

  82. Oglah, M. K., & Mustafa, Y. F. (2020). Synthesis, antioxidant, and preliminary antitumor activities of new curcumin analogues. Journal of Global Pharma Technology, 12, 854–862.

    Google Scholar 

  83. Khalaf, E. M., Abood, N. A., Atta, R. Z., et al. (2023). Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: a comprehensive review. International Journal of Biological Macromolecules, 231, 123354. https://doi.org/10.1016/j.ijbiomac.2023.123354

  84. de Alteriis, E., Falanga, A., Galdiero, S., Guida, M., Maselli, V., & Galdiero, E. (2018). Genotoxicity of gold nanoparticles functionalized with indolicidin towards Saccharomyces cerevisiae. Journal of Environmental Sciences (China), 66, 138–145. https://doi.org/10.1016/j.jes.2017.04.034

    Article  Google Scholar 

  85. Lambadi, P. R., Sharma, T. K., Kumar, P., et al. (2015). Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control. International Journal of Nanomedicine, 10, 2155–2171. https://doi.org/10.2147/IJN.S72923

    Article  Google Scholar 

  86. Mustafa, Y. F. (2021). Chemotherapeutic applications of folate prodrugs: a review. NeuroQuantology, 19, 99–112. https://doi.org/10.14704/nq.2021.19.8.nq21120

    Article  Google Scholar 

  87. Budi, H. S., Jameel, M. F., Widjaja, G., et al. (2024). Study on the role of nano antibacterial materials in orthodontics (a review). Brazilian Journal of Biology, 84, 1–7. https://doi.org/10.1590/1519-6984.257070

    Article  Google Scholar 

  88. Jumintono, J., Alkubaisy, S., Yánez Silva, D., et al. (2021). Effect of cystamine on sperm and antioxidant parameters of ram semen stored at 4 °C for 50 hours. Archives of Razi Institute, 76, 981–989. https://doi.org/10.22092/ARI.2021.355901.1735

    Article  Google Scholar 

  89. Mustafa, Y. F., Khalil, R. R., Mohammed, E. T., Bashir, M. K., & Oglah, M. K. (2021). Effects of structural manipulation on the bioactivity of some coumarin-based products. Archives of Razi Institute, 76, 1297–1305. https://doi.org/10.22092/ari.2021.356100.1776

    Article  Google Scholar 

  90. Abdulaziz, N. T., & Mustafa, Y. F. (2022). Antibacterial and antitumor potentials of some novel coumarins. International Journal of Drug Delivery Technology, 12, 239–247. https://doi.org/10.25258/ijddt.12.1.45

    Article  Google Scholar 

  91. Raya, I., Chupradit, S., Kadhim, M. M., et al. (2022). Role of compositional changes on thermal, magnetic and mechanical properties of Fe-P-C-based amorphous alloys. Chinese Physics B, 31, 016401. https://doi.org/10.1088/1674-1056/ac3655

    Article  Google Scholar 

  92. Kzar, H. H., Kurbanova, S. Y., & Al-ghamdi, H. S. (2023). The biomedical potential of polycaprolactone nanofibrous scaffold containing titanium oxide for wound healing applications. International Journal of Microstructure and Materials Properties, 16, 278–291. https://doi.org/10.1504/IJMMP.2022.10052620

    Article  Google Scholar 

  93. Duraccio, D., Strongone, V., Faga, M. G., et al. (2019). The role of different dry-mixing techniques on the mechanical and biological behavior of UHMWPE/alumina-zirconia composites for biomedical applications. European Polymer Journal, 120, 109274. https://doi.org/10.1016/j.eurpolymj.2019.109274

    Article  Google Scholar 

  94. Olmos, D., Pontes-Quero, G. M., Corral, A., González-Gaitano, G., González-Benito, J. (2018). Preparation and characterization of antimicrobial films based on LDPE/Ag nanoparticles with potential uses in food and health industries. Nanomaterials, 8, 60. https://doi.org/10.3390/nano8020060

  95. Kim, M. H., Park, H., Nam, H. C., Park, S. R., Jung, J. Y., & Park, W. H. (2018). Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing. Carbohydrate Polymers, 181, 579–586. https://doi.org/10.1016/j.carbpol.2017.11.109

    Article  Google Scholar 

  96. Georgeta, P., Ficai, A., Marin, M. M., et al. (2016). New collagen-dextran-zinc oxide composites for. Journal of Nanomaterials, 2016, 1–7.

    Google Scholar 

  97. Abdeen, Z. I., El Farargy, A. F., & Negm, N. A. (2018). Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: Preparation, characterization, swelling and antimicrobial evaluation. Journal of Molecular Liquids, 250, 335–343. https://doi.org/10.1016/j.molliq.2017.12.032

    Article  Google Scholar 

  98. Luo, Z., Liu, J., Lin, H., et al. (2020). In situ fabrication of nano Zno/Bcm biocomposite based on ma modified bacterial cellulose membrane for antibacterial and wound healing. International Journal of Nanomedicine, 15, 1–15. https://doi.org/10.2147/IJN.S231556

    Article  Google Scholar 

  99. Kharaghani, D., Dutta, D., Gitigard, P., et al. (2019). Development of antibacterial contact lenses containing metallic nanoparticles. Polymer Testing, 79, 106034. https://doi.org/10.1016/j.polymertesting.2019.106034

    Article  Google Scholar 

  100. Mustafa, Y. F., Oglah, M. K., Bashir, M. K., Mohammed, E. T., & Khalil, R. R. (2021). Mutual prodrug of 5-ethynyluracil and 5-fluorouracil : Synthesis and pharmacokinetic profile. Clinical Schizophrenia & Related Psychoses, 15, 1–6.

    Google Scholar 

  101. Atia, Y. A., Bokov, D. O., Zinnatullovich, K. R., et al. (2022). The role of amino acid functionalization for improvement of adsorption thioguanine anticancer drugs on the boron nitride nanotubes for drug delivery. Materials Chemistry and Physics, 278, 125664. https://doi.org/10.1016/j.matchemphys.2021.125664

    Article  Google Scholar 

  102. Jelinkova, P., Mazumdar, A., Sur, V. P., et al. (2019). Nanoparticle-drug conjugates treating bacterial infections. Journal of Controlled Release, 307, 166–185. https://doi.org/10.1016/j.jconrel.2019.06.013

    Article  Google Scholar 

  103. Raya, I., Chupradit, S., Mustafa, Y. F., et al. (2021). Carboxymethyl chitosan nano-fibers for controlled releasing 5-fluorouracil anticancer drug. Journal of Nanostructures, 12, 136–143. https://doi.org/10.22052/JNS.2022.01.013

    Article  Google Scholar 

  104. Lin, Z., Aryal, S., Cheng, Y. H., & Gesquiere, A. J. (2022). Integration of in vitro and in vivo models to predict cellular and tissue dosimetry of nanomaterials using physiologically based pharmacokinetic modeling. ACS Nano, 16, 19722–19754. https://doi.org/10.1021/acsnano.2c07312

    Article  Google Scholar 

  105. Khalil, R. R., Mohammed, E. T., & Mustafa, Y. F. (2021). Various promising biological effects of cranberry extract : A review. Clinical Schizophrenia & Related Psychoses, 15, 1–9.

    Google Scholar 

  106. Kasim, S. M., Abdulaziz, N. T., & Mustafa, Y. F. (2022). Synthesis and biomedical activities of coumarins derived from natural phenolic acids. Journal of Medicinal and Chemical Sciences, 5, 546–560. https://doi.org/10.26655/JMCHEMSCI.2022.4.10

    Article  Google Scholar 

  107. Zhao, J., Lin, M., Wang, Z., Cao, X., & Xing, B. (2021). Engineered nanomaterials in the environment: Are they safe? Critical Reviews in Environment Science and Technology, 51, 1443–1478. https://doi.org/10.1080/10643389.2020.1764279

    Article  Google Scholar 

  108. Cosert, K. M., Kim, S., Jalilian, I., et al. (2022). Metallic engineered nanomaterials and ocular toxicity: a current perspective. Pharmaceutics, 14, 981. https://doi.org/10.3390/pharmaceutics14050981

  109. Husain, S., Nandi, A., Simnani, F. Z., et al. (2023). Emerging trends in advanced translational applications of silver nanoparticles: a progressing dawn of nanotechnology. Journal of Functional Biomaterials, 14, 47. https://doi.org/10.3390/jfb14010047

  110. Abbas, M., Yan, K., Li, J., et al. (2022). Agri-nanotechnology and tree nanobionics: Augmentation in crop yield, biosafety, and biomass accumulation. Frontiers in Bioengineering and Biotechnology, 10, 1–13. https://doi.org/10.3389/fbioe.2022.853045

    Article  Google Scholar 

  111. Sargazi, S., Arshad, R., Ghamari, R., et al. (2022). siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biology International, 46, 1320–1344. https://doi.org/10.1002/cbin.11841

    Article  Google Scholar 

  112. Abdelbasset, W. K., Jasim, S. A., Sharma, S. K., et al. (2022). Alginate-based hydrogels and tubes, as biological macromolecule-based platforms for peripheral nerve tissue engineering: A review. Annals of Biomedical Engineering, 50, 628–653. https://doi.org/10.1007/s10439-022-02955-8

    Article  Google Scholar 

  113. Cameron, S. J., Sheng, J., Hosseinian, F., Willmore, W. G. (2022). Nanoparticle effects on stress response pathways and nanoparticle–protein interactions. International Journal of Molecular Sciences, 23, 7962. https://doi.org/10.3390/ijms23147962

  114. Ahmed, B. A., Mustafa, Y. F., & Ibrahim, B. Y. (2022). Isolation and characterization of furanocoumarins from Golden Delicious apple seeds. Journal of Medicinal and Chemical Sciences, 5, 537–545. https://doi.org/10.26655/JMCHEMSCI.2022.4.14

    Article  Google Scholar 

  115. Mangalampalli, B., Dumala, N., Perumalla Venkata, R., & Grover, P. (2018). Genotoxicity, biochemical, and biodistribution studies of magnesium oxide nano and microparticles in albino Wistar rats after 28-day repeated oral exposure. Environmental Toxicology, 33, 396–410. https://doi.org/10.1002/tox.22526

    Article  Google Scholar 

  116. Wang, K., Ning, X., Qin, C., et al. (2022). Respiratory exposure to copper oxide particles causes multiple organ injuries via oxidative stress in a rat model. International Journal of Nanomedicine, 17, 4481–4496. https://doi.org/10.2147/IJN.S378727

    Article  Google Scholar 

  117. Calderón-Garcidueñas, L., Pérez-Calatayud, Á. A., González-Maciel, A., et al. (2022). Environmental nanoparticles reach human fetal brains. Biomedicines, 10, 1–19. https://doi.org/10.3390/biomedicines10020410

    Article  Google Scholar 

  118. Prada, Y. A., Guzmán, F., Ortíz, C., Cabanzo, R., Torres, R., & Mejía-Ospino, E. (2019). New synthetic peptides conjugated to gold nanoclusters: Antibiotic activity against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA). Protein Journal, 38, 506–514. https://doi.org/10.1007/s10930-019-09840-9

    Article  Google Scholar 

  119. Mihailović, V., Srećković, N., Nedić, Z. P., et al. (2023). Green synthesis of silver nanoparticles using Salvia verticillata and Filipendula ulmaria extracts: optimization of synthesis, biological activities, and catalytic properties. Molecules, 28, 808. https://doi.org/10.3390/molecules28020808

  120. Khongthaw, B., Dulta, K., Chauhan, P. K., Kumar, V., & Ighalo, J. O. (2022). Lycopene: A therapeutic strategy against coronavirus disease 19 (COVID- 19). Inflammopharmacology, 30, 1955–1976. https://doi.org/10.1007/s10787-022-01061-4

    Article  Google Scholar 

  121. Mihailovic, V., Katanic Stankovic, J. S., Selakovic, D., Rosic, G. (2021). An overview of the beneficial role of antioxidants in the treatment of nanoparticle-induced toxicities. Oxidative Medicine and Cellular Longevity, 2021, 7244677. https://doi.org/10.1155/2021/7244677

Download references

Funding

This work is self-funded.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author is performing the work.

Corresponding author

Correspondence to Yasser Fakri Mustafa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, Y.F. Modern Developments in the Application and Function of Metal/Metal Oxide Nanocomposite–Based Antibacterial Agents. BioNanoSci. 13, 840–852 (2023). https://doi.org/10.1007/s12668-023-01100-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01100-6

Keywords

Navigation