Skip to main content

Advertisement

Log in

Preparation, Characterization, and Anticancer Efficacy of Chitosan, Chitosan Encapsulated Piperine and Probiotics (Lactobacillus plantarum (MTCC-1407), and Lactobacillus rhamnosus (MTCC-1423) Nanoparticles

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Cervical cancer is one of the most prevalent cancers among women. The currently available treatments like immunotherapy, radiotherapy, chemotherapy, and surgery have many side effects, including urinary bladder infections, gynecological morbidity, and anal sphincter dysfunction. The gut microbiome, Lactobacillus plantarum, and Lactobacillus rhamnosus have the ability to recognize normal cells as well as cancerous cells. Chitosan encapsulated nanoparticles enhance the targeted drug delivery without any side effects. The present investigation demonstrates the efficacy of chitosan encapsulated piperine and probiotic nanoparticles against cervical cancer cells. Chitosan encapsulated nanoparticles are prepared by the tripolyphosphate cross-linking method. The characterization study of nanoparticles was carried out through UV–visible spectroscopy, dynamic light scattering analysis, zeta potential analysis, and SEM imaging techniques. The cytotoxic effect of chitosan encapsulated piperine, Lactobacillus plantarum, and Lactobacillus rhamnosus nanoparticles on HeLa cells was assessed by MTT assay. From the findings, we concluded that chitosan encapsulated probiotic Lactobacillus rhamnosus nanoparticles showed potent anti-cancer efficacy against HeLa cell lines.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Code Availability

Not applicable.

Abbreviations

HPV:

Human papillomavirus

L. plantarum :

Lactobacillus plantarum

L. rhamnosus :

Lactobacillus rhamnosus

PTEN:

Phosphatase and tensin homolog

MAPK:

Mitogen-activated protein kinases

DLS:

Dynamic light scattering

TPP:

Sodium tripolyphosphate

PBS:

Phosphate-buffered saline

NaCl:

Sodium chloride

FBS:

Fetal bovine serum

MTT:

(3-(4,5-Dimethyl thiazolyl-2)-2, 5-diphenyltetrazolium bromide)

DMSO:

Dimethyl sulfoxide

SEM:

Scanning electron microscopy

CS-NPs:

Chitosan nanoparticles

CS-PNPs:

Chitosan encapsulated piperine nanoparticles

CS-LPNPs:

Chitosan encapsulated Lactobacillus plantarum nanoparticles

CS-LRNPs:

Chitosan encapsulated Lactobacillus rhamnosus nanoparticles

PDI:

Poly dispersity index

References

  1. Small, W., et al. (Jul. 2017). Cervical cancer: A global health crisis. Cancer, 123(13), 2404–2412. https://doi.org/10.1002/cncr.30667

    Article  Google Scholar 

  2. Kessler, T. A. (May 2017). Cervical cancer: Prevention and early detection. Seminars in Oncology Nursing, 33(2), 172–183. https://doi.org/10.1016/j.soncn.2017.02.005

    Article  Google Scholar 

  3. García Arteaga, J. D. and Kybic, J. (2007) , “Automatic landmark detection for cervical image registration validation,” p. 65142S, https://doi.org/10.1117/12.708893

  4. Pedersen, D., Bentzen, S. M., & Overgaard, J. (Jul. 1994). Early and late radiotherapeutic morbidity in 442 consecutive patients with locally advanced carcinoma of the uterine cervix. Int. J. Radiat. Oncol., 29(5), 941–952. https://doi.org/10.1016/0360-3016(94)90387-5

    Article  Google Scholar 

  5. Sahoo, S. K., Parveen, S., & Panda, J. J. (Mar. 2007). “The present and future of nanotechnology in human health care”, Nanomedicine Nanotechnology. Biologie et Médecine, 3(1), 20–31. https://doi.org/10.1016/j.nano.2006.11.008

    Article  Google Scholar 

  6. Zhang, L., Gu, F., Chan, J., Wang, A., Langer, R., & Farokhzad, O. (May 2008). Nanoparticles in medicine: Therapeutic applications and developments. Clinical Pharmacology and Therapeutics, 83(5), 761–769. https://doi.org/10.1038/sj.clpt.6100400

    Article  Google Scholar 

  7. Zhang, M., et al. (Dec. 2016). A hyaluronidase-responsive nanoparticle-based drug delivery system for targeting colon cancer cells. Cancer Research, 76(24), 7208–7218. https://doi.org/10.1158/0008-5472.CAN-16-1681

    Article  Google Scholar 

  8. Ajnai, G., Chiu, A., Kan, T., Cheng, C.-C., Tsai, T.-H., & Chang, J. (Dec. 2014). Trends of gold nanoparticle-based drug delivery system in cancer therapy. J. Exp. Clin. Med., 6(6), 172–178. https://doi.org/10.1016/j.jecm.2014.10.015

    Article  Google Scholar 

  9. Srivastava, V., Gusain, D., & Sharma, Y. C. (Jun. 2015). Critical review on the toxicity of some widely used engineered nanoparticles. Industrial and Engineering Chemistry Research, 54(24), 6209–6233. https://doi.org/10.1021/acs.iecr.5b01610

    Article  Google Scholar 

  10. P. Guiot and P. Couvreur, Polymeric nanoparticles and microspheres. CRC Press, 2018

  11. Islam, S., Bhuiyan, M. A. R., & Islam, M. N. (Sep. 2017). Chitin and chitosan: Structure, properties and applications in biomedical engineering. Journal of Polymers and the Environment, 25(3), 854–866. https://doi.org/10.1007/s10924-016-0865-5

    Article  Google Scholar 

  12. Saikia, C. and Gogoi, P. (2015). “Chitosan: A promising biopolymer in drug delivery applications,” J. Mol. Genet. Med., vol. s4, https://doi.org/10.4172/1747-0862.S4-006.

  13. Yuan, Q., Hein, S., & Misra, R. D. K. (Jul. 2010). New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomaterialia, 6(7), 2732–2739. https://doi.org/10.1016/j.actbio.2010.01.025

    Article  Google Scholar 

  14. Li, J., et al. (Oct. 2018). Chitosan-based nanomaterials for drug delivery. Molecules, 23(10), 2661. https://doi.org/10.3390/molecules23102661

    Article  Google Scholar 

  15. Zeng, Z. (2011). “Recent advances of chitosan nanoparticles as drug carriers,” Int. J. Nanomedicine, p. 765, https://doi.org/10.2147/IJN.S17296.

  16. Agnihotri, S. A., Mallikarjuna, N. N., & Aminabhavi, T. M. (Nov. 2004). Recent advances on chitosan-based micro- and nanoparticles in drug delivery. Journal of Controlled Release, 100(1), 5–28. https://doi.org/10.1016/j.jconrel.2004.08.010

    Article  Google Scholar 

  17. Hassani, S., Laouini, A., Fessi, H., & Charcosset, C. (Oct. 2015). Preparation of chitosan–TPP nanoparticles using microengineered membranes – Effect of parameters and encapsulation of tacrine. Colloids Surfaces A Physicochem. Eng. Asp., 482, 34–43. https://doi.org/10.1016/j.colsurfa.2015.04.006

    Article  Google Scholar 

  18. Umadevi, P., Deepti, K., & Venugopal, D. V. R. (Nov. 2013). Synthesis, anticancer and antibacterial activities of piperine analogs. Medicinal Chemistry Research, 22(11), 5466–5471. https://doi.org/10.1007/s00044-013-0541-4

    Article  Google Scholar 

  19. Dahiya, S., Rani, R., Dhingra, D., Kumar, S., & Dilbaghi, N. (Aug. 2018). Conjugation of epigallocatechin gallate and piperine into a zein nanocarrier: Implication on antioxidant and anticancer potential. Adv. Nat. Sci. Nanosci. Nanotechnol., 9(3), 035011. https://doi.org/10.1088/2043-6254/aad5c1

    Article  Google Scholar 

  20. Lai, L., et al. (Apr. 2012). Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacologica Sinica, 33(4), 523–530. https://doi.org/10.1038/aps.2011.209

    Article  Google Scholar 

  21. Katiyar, S. S., Muntimadugu, E., Rafeeqi, T. A., Domb, A. J., & Khan, W. (Sep. 2016). Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Delivery, 23(7), 2608–2616. https://doi.org/10.3109/10717544.2015.1039667

    Article  Google Scholar 

  22. Jain, S., Meka, S. R. K., & Chatterjee, K. (Aug. 2016). Engineering a piperine eluting nanofibrous patch for cancer treatment. ACS Biomaterials Science & Engineering, 2(8), 1376–1385. https://doi.org/10.1021/acsbiomaterials.6b00297

    Article  Google Scholar 

  23. Han, S., Liu, H., Yang, L., Cui, L., & Xu, Y. (Dec. 2017). Piperine (PP) enhanced mitomycin-C (MMC) therapy of human cervical cancer through suppressing Bcl-2 signaling pathway via inactivating STAT3/NF-κB. Biomedicine & Pharmacotherapy, 96, 1403–1410. https://doi.org/10.1016/j.biopha.2017.11.022

    Article  Google Scholar 

  24. Baspinar, Y., Üstündas, M., Bayraktar, O., & Sezgin, C. (Mar. 2018). Curcumin and piperine loaded zein-chitosan nanoparticles: Development and in-vitro characterisation. Saudi Pharm. J., 26(3), 323–334. https://doi.org/10.1016/j.jsps.2018.01.010

    Article  Google Scholar 

  25. Kumar, S. S. D., Surianarayanan, M., Vijayaraghavan, R., Mandal, A. B., & MacFarlane, D. R. (Jan. 2014). Curcumin loaded poly(2-hydroxyethyl methacrylate) nanoparticles from gelled ionic liquid – In vitro cytotoxicity and anti-cancer activity in SKOV-3 cells. European Journal of Pharmaceutical Sciences, 51, 34–44. https://doi.org/10.1016/j.ejps.2013.08.036

    Article  Google Scholar 

  26. Elnaggar, Y. S. R., Etman, S. M., Abdelmonsif, D. A., & Abdallah, O. Y. (Oct. 2015). Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: Optimization, biological efficacy, and potential toxicity. Journal of Pharmaceutical Sciences, 104(10), 3544–3556. https://doi.org/10.1002/jps.24557

    Article  Google Scholar 

  27. Walter, J. (Aug. 2008). Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Applied and Environment Microbiology, 74(16), 4985–4996. https://doi.org/10.1128/AEM.00753-08

    Article  Google Scholar 

  28. Reid, G., Jass, J., Sebulsky, M. T., & McCormick, J. K. (Oct. 2003). Potential uses of probiotics in clinical practice. Clinical Microbiology Reviews, 16(4), 658–672. https://doi.org/10.1128/CMR.16.4.658-672.2003

    Article  Google Scholar 

  29. Makarova, K., et al. (Oct. 2006). Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Sciences, 103(42), 15611–15616. https://doi.org/10.1073/pnas.0607117103

    Article  Google Scholar 

  30. Fijan, S. (May 2014). Microorganisms with claimed probiotic properties: An overview of recent literature. International Journal of Environmental Research and Public Health, 11(5), 4745–4767. https://doi.org/10.3390/ijerph110504745

    Article  Google Scholar 

  31. Paolillo, R., Romano Carratelli, C., Sorrentino, S., Mazzola, N., and Rizzo, A. (2009). “Immunomodulatory effects of Lactobacillus plantarum on human colon cancer cells,” Int. Immunopharmacol., vol. 9, no. 11, pp. 1265–1271, https://doi.org/10.1016/j.intimp.2009.07.008.

  32. Fredriksen, L., Mathiesen, G., Sioud, M., & Eijsink, V. G. H. (Nov. 2010). Cell wall anchoring of the 37-kilodalton oncofetal antigen by Lactobacillus plantarum for mucosal cancer vaccine delivery. Applied and Environment Microbiology, 76(21), 7359–7362. https://doi.org/10.1128/AEM.01031-10

    Article  Google Scholar 

  33. Sentürk, M., Ercan, F., & Yalcin, S. (Jan. 2020). The secondary metabolites produced by Lactobacillus plantarum downregulate BCL-2 and BUFFY genes on breast cancer cell line and model organism Drosophila melanogaster: Molecular docking approach. Cancer Chemotherapy and Pharmacology, 85(1), 33–45. https://doi.org/10.1007/s00280-019-03978-0

    Article  Google Scholar 

  34. Luang-In, V., et al. (Aug. 2020). Cytotoxicity of Lactobacillus plantarum KK518 isolated from Pak-Sian Dong (Thai Fermented Gynandropsis pentaphylla DC.) against HepG2, MCF-7 and HeLa cancer cells. Pharmacogn. J., 12(5), 1050–1057. https://doi.org/10.5530/pj.2020.12.148

    Article  Google Scholar 

  35. Rafter, J. (Sep. 2002). Lactic acid bacteria and cancer: Mechanistic perspective. British Journal of Nutrition, 88(S1), S89–S94. https://doi.org/10.1079/BJN2002633

    Article  Google Scholar 

  36. Zhong, L. (2014). Emerging roles of lactic acid bacteria in protection against colorectal cancer. World Journal of Gastroenterology, 20(24), 7878. https://doi.org/10.3748/wjg.v20.i24.7878

    Article  Google Scholar 

  37. Christensen, H. R., Frøkiær, H., & Pestka, J. J. (Jan. 2002). Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. The Journal of Immunology, 168(1), 171–178. https://doi.org/10.4049/jimmunol.168.1.171

    Article  Google Scholar 

  38. Asoudeh-Fard, A., Barzegari, A., Dehnad, A., Bastani, S., Golchin, A., & Omidi, Y. (Jun. 2017). Lactobacillus plantarum induces apoptosis in oral cancer KB cells through upregulation of PTEN and downregulation of MAPK signalling pathways. BioImpacts: BI, 7(3), 193–198. https://doi.org/10.15171/bi.2017.22

    Article  Google Scholar 

  39. Hu, J., et al. (Jun. 2015). Anti-tumour immune effect of oral administration of Lactobacillus plantarum to CT26 tumour-bearing mice. Journal of Biosciences, 40(2), 269–279. https://doi.org/10.1007/s12038-015-9518-4

    Article  Google Scholar 

  40. Sharma, M., Chandel, D., & Shukla, G. (Jan. 2020). Antigenotoxicity and cytotoxic potentials of metabiotics extracted from isolated probiotic, Lactobacillus rhamnosus MD 14 on Caco-2 and HT-29 human colon cancer cells. Nutrition and Cancer, 72(1), 110–119. https://doi.org/10.1080/01635581.2019.1615514

    Article  Google Scholar 

  41. Cook, M. T., Tzortzis, G., Charalampopoulos, D., & Khutoryanskiy, V. V. (Aug. 2012). Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, 162(1), 56–67. https://doi.org/10.1016/j.jconrel.2012.06.003

    Article  Google Scholar 

  42. Călinoiu, L.-F., Ştefănescu, B., Pop, I., Muntean, L., & Vodnar, D. (Mar. 2019). Chitosan coating applications in probiotic microencapsulation. Coatings, 9(3), 194. https://doi.org/10.3390/coatings9030194

    Article  Google Scholar 

  43. Vodnar, D. C., & Socaciu, C. (Jun. 2014). Selenium enriched green tea increase stability of Lactobacillus casei and Lactobacillus plantarum in chitosan coated alginate microcapsules during exposure to simulated gastrointestinal and refrigerated conditions. LWT - Food Sci. Technol., 57(1), 406–411. https://doi.org/10.1016/j.lwt.2013.12.043

    Article  Google Scholar 

  44. Chávarri, M., Marañón, I., Ares, R., Ibáñez, F. C., Marzo, F., & Villarán, M. del C. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol., 142(1–2), 185–189. https://doi.org/10.1016/j.ijfoodmicro.2010.06.022

    Article  Google Scholar 

  45. Seow, S. W., Rahmat, J. N. B., Mohamed, A. A. K., Mahendran, R., Lee, Y. K., & Bay, B. H. (Nov. 2002). Lactobacillus species is more cytotoxic to human bladder cancer cells than Mycobacterium bovis (Bacillus Calmette-Guerin). Journal of Urology, 168(5), 2236–2239. https://doi.org/10.1016/S0022-5347(05)64362-5

    Article  Google Scholar 

  46. Desai, K. G. (2016). Chitosan nanoparticles prepared by ionotropic gelation: An overview of recent advances. Crit. Rev. Ther. Drug Carr. Syst., 33(2), 107–158. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2016014850

    Article  Google Scholar 

  47. Ebrahimnezhad, K. S.P., Khavarpour M. (2017) “Survival of Lactobacillus acidophilus as probiotic bacteria using chitosan nanoparticles,” Int. J. Eng., 30(4) https://doi.org/10.5829/idosi.ije.2017.30.04a.01

  48. Rashedi, J., et al. (Aug. 2019). Anti-tumor effect of quercetin loaded chitosan nanoparticles on induced colon cancer in Wistar rats. Adv. Pharm. Bull., 9(3), 409–415. https://doi.org/10.15171/apb.2019.048

    Article  MathSciNet  Google Scholar 

  49. Kecel-Gunduz, S., et al. (Jun. 2020). In Silico design of AVP (4–5) peptide and synthesis, characterization and in vitro activity of chitosan nanoparticles. DARU J. Pharm. Sci., 28(1), 139–157. https://doi.org/10.1007/s40199-019-00325-9

    Article  Google Scholar 

  50. D. S. Vijayalakshmi, V., Kousar, P. H. (2020). Optimization and characterization of chitosan based nanocarrier for the application of cancer drug delivery,” J. Crit. Rev., 7(07), https://doi.org/10.31838/jcr.07.07.139.

  51. Ghadi, A., Mahjoub, S., Tabandeh, F., Talebnia, F., (2014) “Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering.,” Casp. J. Intern. Med., vol. 5, no. 3, pp. 156–61, 2014, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/25202443.

  52. De Leersnyder, I., De Gelder, L., Van Driessche, I., & Vermeir, P. (Nov. 2019). Revealing the Importance of aging, environment, size and stabilization mechanisms on the stability of metal nanoparticles: A case study for silver nanoparticles in a minimally defined and complex undefined bacterial growth medium. Nanomaterials, 9(12), 1684. https://doi.org/10.3390/nano9121684

    Article  Google Scholar 

  53. Ko, J., Park, H., Hwang, S., Park, J., & Lee, J. (Dec. 2002). Preparation and characterization of chitosan microparticles intended for controlled drug delivery. International Journal of Pharmaceutics, 249(1–2), 165–174. https://doi.org/10.1016/S0378-5173(02)00487-8

    Article  Google Scholar 

  54. Gan, Q., Wang, T., Cochrane, C., & McCarron, P. (Aug. 2005). Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids Surfaces B Biointerfaces, 44(2–3), 65–73. https://doi.org/10.1016/j.colsurfb.2005.06.001

    Article  Google Scholar 

  55. Sharifi, F., et al. (Oct. 2019). Zeta potential changing self-emulsifying drug delivery systems utilizing a novel Janus-headed surfactant: A promising strategy for enhanced mucus permeation. Journal of Molecular Liquids, 291, 111285. https://doi.org/10.1016/j.molliq.2019.111285

    Article  Google Scholar 

  56. Shaikh, J., Ankola, D. D., Beniwal, V., Singh, D., & Kumar, M. N. V. R. (Jun. 2009). Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. European Journal of Pharmaceutical Sciences, 37(3–4), 223–230. https://doi.org/10.1016/j.ejps.2009.02.019

    Article  Google Scholar 

  57. Tığlı Aydın, R. S., & Pulat, M. (2012). fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: Evaluation of controlled release kinetics. Journal Nanomaterials., 2012, 1–10. https://doi.org/10.1155/2012/313961

    Article  Google Scholar 

  58. Lim, E.-K., Huh, Y.-M., Yang, J., Lee, K., Suh, J.-S., & Haam, S. (Jun. 2011). pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Advanced Materials, 23(21), 2436–2442. https://doi.org/10.1002/adma.201100351

    Article  Google Scholar 

  59. Ahmad, N., et al. (Oct. 2016). Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of cerebral ischemia. International Journal of Biological Macromolecules, 91, 640–655. https://doi.org/10.1016/j.ijbiomac.2016.06.001

    Article  Google Scholar 

  60. Ghaz-Jahanian, M. A., Abbaspour-Aghdam, F., Anarjan, N., Berenjian, A., & Jafarizadeh-Malmiri, H. (Mar. 2015). Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Molecular Biotechnology, 57(3), 201–218. https://doi.org/10.1007/s12033-014-9816-3

    Article  Google Scholar 

  61. Bahuguna, A., Khan, I., Bajpai, V. K., & Kang, S. C. (Apr. 2017). MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J. Pharmacol., 12(2), 8. https://doi.org/10.3329/bjp.v12i2.30892

    Article  Google Scholar 

Download references

Acknowledgements

I and my co-authors would like to express our sincere gratitude towards Dr. K.M. Saradhadevi, Assistant Professor of the Department of Biochemistry, for her constant moral support and guidance throughout this research work.

Author information

Authors and Affiliations

Authors

Contributions

Gayathiri Gunasangkaran: Drafting the article and submitting the final version of the article.

Anjali K. Ravi: Drafting the article and submitting the final version of the article.

Vijaya Anand Arumugam: Co- author who might assist the corresponding author and first author in writing the article.

Saradhadevi Muthukrishnan: Corresponding author make sustainable contribution for the intellectual input and designing the whole paper.

Corresponding author

Correspondence to Saradhadevi Muthukrishnan.

Ethics declarations

Research Involving Human Participants and Their Data or Biological Material

None.

Research Involving Animals and Their Data or Biological Material

None.

Utilization of Plants, Algae, and Fungi

Not applicable.

Ethics Approval and Consent to Participate

None.

Consent for Publication

The consent of all the authors has taken to publish the research in this journal.

Conflict of Interest

The authors declare no competing interests.

Funding

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunasangkaran, G., Ravi, A.K., Arumugam, V.A. et al. Preparation, Characterization, and Anticancer Efficacy of Chitosan, Chitosan Encapsulated Piperine and Probiotics (Lactobacillus plantarum (MTCC-1407), and Lactobacillus rhamnosus (MTCC-1423) Nanoparticles. BioNanoSci. 12, 527–539 (2022). https://doi.org/10.1007/s12668-022-00961-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-00961-7

Keywords

Navigation