Skip to main content
Log in

CuO-NPs/TFA: a New Catalytic System to Synthesize a Novel Series of Pyrazole Imines with High Antioxidant Properties

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

We report here the synthesis of a novel series of pyrazole analogs involving the condensation reaction between 5-amino-1H-pyrazole-4-carbonitrile derivatives and carbonyl compounds. The reactions proceeded in acidic media, and were catalyzed by copper oxide nanoparticles (CuO- NPs) which were synthesized under green condition. The tea leaves extract served as green reducing agent for the conversion of copper nitrate to CuO-NPs. The developed methodology afforded the desired products up to 90% yields in 6 h. The newly synthesized compounds were tested for antioxidant properties. Out of 15 newly developed pyrazole compounds, 11 showed better antioxidant activity than the standard antioxidant drug Trolox.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3

Similar content being viewed by others

References

  1. Gutti, G., Kumar, D., Paliwal, P., Ganeshpurkar, A., Lahre, K., Kumar, A., Krishnamurthy, S., & Singh, S. K. (2019). Development of pyrazole and spiropyrazoline analogs as multifunctional agents for treatment of Alzheimer’s disease. Bioorganic Chemistry, 90, 103080.

    Article  Google Scholar 

  2. Saueressig, S., Tessmann, J., Mastelari, R., Silva, L. P. D., Buss, J., Segatto, N. V., Bernini, K. R., Pacheco, B., Pereira, C. M. P. D., Collares, T., & Seixas, F. K. (2018). Synergistic effect of pyrazoles derivatives and doxorubicin in claudin-low breast cancer subtype. Biomedicine Pharmacotherapy, 98, 390–398.

    Article  Google Scholar 

  3. Ozkınalı, S., Gür, M., Sener, N., Alkın, S., & Çavus, M. S. (2018). Synthesis of new azo Schiff bases of pyrazole derivatives and their spectroscopic and theoretical investigations. Journal of Molecular Structure, 1174, 74–83.

    Article  Google Scholar 

  4. Harras, M. F., & Sabour, R. (2018). Design, synthesis and biological evaluation of novel 1,3,4-trisubstituted pyrazole derivatives as potential chemotherapeutic agents for hepatocellular carcinoma. Bioorganic Chemistry, 78, 149–157.

    Article  Google Scholar 

  5. Bansal, G., Singh, S., Monga, V., Thanikachalam, P. V., & Chawla, P. (2019). Synthesis and biological evaluation of thiazolidine-2,4-dione-pyrazole conjugates as antidiabetic, anti-inflammatory and antioxidant agents. Bioorganic Chemistry, 92, 103271.

    Article  Google Scholar 

  6. Küçükgüzel, S., & Senkardes, S. (2015). Recent advances in bioactive pyrazoles. European Journal of Medicinal Chemistry, 97, 786–815.

    Article  Google Scholar 

  7. Faria, J. V., Vegi, P. F., Miguita, A. G. C., Santos, M. S. D., Boechat, N., & Bernardino, A. M. R. (2017). Recently reported biological activities of pyrazole compounds. Bioorganic & Medicinal Chemistry, 25, 5891–5903.

    Article  Google Scholar 

  8. Bekhit, A. A., Hassan, A. M. M., Abd El Razik, H. A., El-Miligy, M. M. M., El-Agroudy, E. J., & Bekhit, A. E. A. (2015). New heterocyclic hybrids of pyrazole and its bioisosteres: Design, synthesis and biological evaluation as dual acting antimalarial-antileishmanial agents. European Journal of Medicinal Chemistry, 94, 30–44.

    Article  Google Scholar 

  9. El Shehry, M. F., Ghorab, M. M., Abbas, S. Y., Fayed, E. A., Shedid, S. A., & Ammar, Y. A. (2018). Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. European Journal of Medicinal Chemistry, 143, 1463–1473.

    Article  Google Scholar 

  10. Shetty, S., & Kalluraya, B. (2015). Design and synthesis of hydrazone incorporated pyrazoles and triazoles as possible antioxidants. Der Pharma Chemcia, 7, 26–32.

    Google Scholar 

  11. Bekhit, A. A., Ashour, H. M. A., Abdel Ghany, Y. S., Bekhit, A. E. A., & Baraka, A. (2008). Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents. European Journal of Medicinal Chemistry, 43, 456–463.

    Article  Google Scholar 

  12. Nayak, N., Ramprasad, J., & Dalimba, U. (2016). Synthesis and antitubercular and antibacterial activity of some active fluorine containing quinoline–pyrazole hybrid derivatives. Journal of Fluorine Chemistry, 183, 59–68.

    Article  Google Scholar 

  13. Ouyang, G., Cai, X.-J., Chen, Z., Song, B.-A., Bhadury, P. S., Yang, S., Jin, L.-H., Xue, W., Hu, D.-Y., & Zeng, S. (2008). Synthesis and antiviral activities of pyrazole derivatives containing an oxime moiety. Journal of Agricultural and Food Chemistry, 56, 10160–10167.

    Article  Google Scholar 

  14. Bhosle, M. R., Mali, J. R., Pal, S., Srivastava, A. K., & Mane, R. A. (2014). Synthesis and antihyperglycemic evaluation of new 2-hydrazolyl-4-thiazolidinone-5-carboxylic acids having pyrazolyl pharmacophores. Bioorganic & Medicinal Chemistry Letters, 24, 2651–2654.

    Article  Google Scholar 

  15. Parveen, S. (2020). Recent advances in anticancer ruthenium Schiff base complexes. Applied Organometallic Chemistry, 34, e5687.

    Article  Google Scholar 

  16. Patil, R. D., & Adimurthy, S. (2013). Catalytic methods for imine synthesis. Asian Journal of Organic Chemistry, 2, 726–744.

    Article  Google Scholar 

  17. Mahato, S., Meheta, N., Kotakonda, M., Joshi, M., Shit, M., Choudhury, A. R., & Biswas, B. (2020). Synthesis, structure, polyphenol oxidase mimicking and bactericidal activity of a zinc-schiff base complex. Polyhedron, 194, 114933.

    Article  Google Scholar 

  18. MacLean, L., Karcz, D., Jenkins, H., McClean, S., Devereux, M., Howe, O., Pereira, M. D., May, N. V., Enyedy, É. A., & Creaven, B. S. (2019). Copper (II) complexes of coumarin-derived Schiff base ligands: Pro- or antioxidant activity in MCF-7 cells? Journal of Inorganic Biochemistry, 197, 110702.

    Article  Google Scholar 

  19. Shiju, C., Arish, D., & Kumaresan, S. (2020). Novel water soluble Schiff base metal complexes: Synthesis, characterization, antimicrobial-, DNA cleavage, and anticancer activity. Journal of Molecular Structure, 1221, 128770.

    Article  Google Scholar 

  20. Kirubavathy, S. J., & Chitra, S. (2020). Synthesis, characterization, DFT, in-vitro anti-microbial, cytotoxicity evaluation, and DNA binding interactions of transition metal complexes of quinoxaline Schiff base ligand. Materials Today: Proceedings, 33, 2331–2350.

    Google Scholar 

  21. Silva, V. L. M., Elguero, J., & Silva, A. M. S. (2018). Current progress on antioxidants incorporating the pyrazole core. European Journal of Medicinal Chemistry, 156, 394–429.

    Article  Google Scholar 

  22. Olyaei, A., & Sadeghpour, M. (2020). Recent developments in the synthesis and applications of furopyrazoles. New Journal of Chemistry, 44, 14791–14813.

    Article  Google Scholar 

  23. Tu, Y., Chen, Q., Wang, S., Uri, A., Yang, X., Chu, J., Chen, J., Luo, B., Chen, X., Wen, S., & Pi, R. (2016). Discovery of lipoic acid-4-phenyl-1H-pyrazole hybrids as novel bifunctional ROCK inhibitors with antioxidant activity. RSC Advances, 6, 58516–58520.

    Article  Google Scholar 

  24. Gomes, P. M. O., Ouro, P. M. S., Silva, A. M. S., & Silva, V. L. M. (2020). Styrylpyrazoles: Properties, Synthesis and Transformations. Molecules, 25, 5886.

    Article  Google Scholar 

  25. Aran, V. J., Kumar, M., Molina, J., Lamarque, L., Navarro, P., Garcıa-Espana, E., Ramırez, J. A., Luis, S. V., & Escuder, B. (1999). Synthesis and protonation behavior of 26-membered oxaaza and polyaza macrocycles containing two heteroaromatic units of 3,5-disubstituted pyrazole or 1-benzylpyrazole. A Potentiometric and 1H and 13C NMR Study. The Journal of Organic Chemistry, 64, 6135–6146.

    Article  Google Scholar 

  26. Khan, S. A., Asiri, A. M., Basheike, A. A., & Sharma, K. (2013). Green synthesis of novel pyrazole containing Schiff base derivatives as antibacterial agents on the bases of in-vitro and DFT. European Journal of Chemistry, 4, 454–458.

    Article  Google Scholar 

  27. Rao, V. K., Reddy, S. S., Krishna, B. S., Naidu, K. R. M., Raju, C. N., & Ghosh, S. K. (2010). Synthesis of Schiff’s bases in aqueous medium: A green alternative approach with effective mass yield and high reaction rates. Green Chemistry Letters and Reviews, 3, 217–223.

    Article  Google Scholar 

  28. Monopoli, A., Cotugno, P., Iannone, F., Ciminale, F., Dell’Anna, M. M., Mastrorilli, P., & Nacci, A. (2014). Ionic-liquid-assisted metal-free oxidative coupling of amines to give imines. European Journal of Organic Chemistry, 2014, 5925–5931.

    Article  Google Scholar 

  29. Wang, Y., Xu, F., Zhu, Y., Song, B., Luo, D., Yu, G., Chen, S., Xue, W., & Wu, J. (2018). Pyrazolo[3,4-d]pyrimidine derivatives containing a Schiff base moiety as potential antiviral agents. Bioorganic & Medicinal Chemistry Letters, 28, 2979–2984.

    Article  Google Scholar 

  30. Chakraborti, A. K., Bhagat, S., & Rudrawar, S. (2004). Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones. Tetrahedron Letters, 45, 7641–7644.

    Article  Google Scholar 

  31. Hosseini-Sarvari, M. (2011). Nano-tube TiO2 as a new catalyst for eco-friendly synthesis of imines in sunlight. Chinese Chemical Letters, 22, 547–550.

    Article  Google Scholar 

  32. Mobinikhaledi, A., Steel, P. J., & Polson, M. (2009). Rapid and efficient synthesis of Schiff bases catalyzed by copper nitrate. Synthesis and Reactivity Inorganic, Metal-Organic, and Nano-Metal Chemistry, 39, 189–192.

    Article  Google Scholar 

  33. Liu, G., Cogan, D. A., Owens, T. D., Tang, T. P., & Ellman, J. A. (1999). Synthesis of enantiomerically pure N-tert-butanesulfinyl imines (tert-butanesulfinimines) by the direct condensation of tert-butanesulfinamide with aldehydes and ketones. The Journal of Organic Chemistry, 64, 1278–1284.

    Article  Google Scholar 

  34. Elnagdy, H. M. F., & Sarma, D. (2019). FeCl3/PVP as green homogeneous catalyst to synthesize 5-amino-1H-pyrazole-4-carbonitriles from malononitrile derivatives. ChemistrySelect, 4, 783–787.

    Article  Google Scholar 

  35. Lee, N. S., Kerdchoechuen, O., & Laohakunjit, N. (2012). Chemical qualities and phenolic compounds of Assam tea after soil drench application of selenium and aluminium. Plant and Soil, 356, 381–393.

    Article  Google Scholar 

  36. Khanum, H., Faiza, S., Sulochanamma, G., & Borse, B. B. (2017). Quality, antioxidant activity and composition of Indian black teas. Journal of Food Science and Technology, 54, 1266–1272.

    Article  Google Scholar 

  37. Karak, T., Paul, R. K., Kutu, F. R., Mehra, A., Khare, P., Dutta, A. K., Bora, K., & Boruah, R. K. (2017). Comparative assessment of copper, iron, and zinc contents in selected Indian (Assam) and South African (Thohoyandou) tea (Camellia sinensis L.) samples and their infusion: A quest for health risks to consumer. Biological Trace Element Research, 175, 475–487.

    Article  Google Scholar 

  38. Dey, K. K., Kumar, A., Shanker, R., Dhawan, A., Wan, M., Yadav, R. R., & Srivastava, A. K. (2012). Growth morphologies, phase formation, optical & biological responses of nanostructures of CuO and their application as cooling fluid in high energy density devices. RSC Advances, 2, 1387–1403.

    Article  Google Scholar 

  39. Gulzar, M., Masjuki, H., Varman, M., Kalam, M., Mufti, R. A., Zulkifli, N., Yunus, R., & Zahid, R. (2015). Tribology International, 88, 271–279.

    Article  Google Scholar 

  40. Raul, P. K., Senapati, S., Sahoo, A. K., Umlong, I. M., Devi, R. R., Thakur, A. J., & Veer, V. (2014). CuO nanorods: A potential and efficient adsorbent in water purification. RSC Advances, 4, 40580–40587.

    Article  Google Scholar 

  41. Zampardi, G., Thöming, J., Naatz, H., Amin, H. M. A., Pokhrel, S., Mädler, L., & Compton, R. G. (2018). Electrochemical behavior of single CuO nanoparticles: Implications for the assessment of their environmental fate. Small (Weinheim an der Bergstrasse, Germany), 14, 1801765.

    Article  Google Scholar 

  42. Williams, W. B., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und -Technologie, 28, 25–30.

    Article  Google Scholar 

  43. Kenchappa, R., Bodke, Y. D., Chandrashekar, A., Sindhe, M. A., & Peethambar, S. K. (2017). Synthesis of coumarin derivatives containing pyrazole and indenone rings as potent antioxidant and antihyperglycemic agents. Arabian Journal of Chemistry, 10, S3895–S3906.

    Article  Google Scholar 

  44. Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A., & Ansar, M. (2018). Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 23, 134.

    Article  Google Scholar 

  45. Cheng, H., DeMello, K. M. L., Li, J., Sakya, S. M., Ando, K., Kawamura, K., Kato, T., Rafka, R. J., Jaynes, B. H., Ziegler, C. B., Stevens, R., Lund, L. A., Mann, D. W., Kilroy, C., Haven, M. L., Nimz, E. L., Dutra, J. K., Li, C., Minich, M. L., … Seibel, S. B. (2006). Synthesis and SAR of heteroaryl-phenyl-substituted pyrazole derivatives as highly selective and potent canine COX-2 inhibitors. Bioorganic & Medicinal Chemistry Letters, 16, 2076–2080.

    Article  Google Scholar 

  46. Dago, C. D., Maux, P. L., Roisnel, T., Brigaudeau, C., Bekro, Y., Mignen, O., & Bazureau, J. (2018). Preliminary Structure-Activity Relationship (SAR) of a novel series of pyrazole SKF-96365 analogues as potential Store-Operated Calcium Entry (SOCE) inhibitors. International Journal of Molecular Sciences, 19, 856.

    Article  Google Scholar 

  47. Bandgar, B. P., Gawande, S. S., Bodade, R. G., Gawande, N. M., & Khobragade, C. N. (2009). Synthesis and biological evaluation of a novel series of pyrazole chalconesas anti-inflammatory, antioxidant and antimicrobial agents. Bioorganic & Medicinal Chemistry, 17, 8168–8173.

    Article  Google Scholar 

  48. Musad, E. A., Mohamed, R., Saeed, B. A., Vishwanath, B. S., & Rai, K. M. L. (2011). Synthesis and evaluation of antioxidant and antibacterial activities of new substituted bis(1,3,4-oxadiazoles), 3,5-bis(substituted) pyrazoles and isoxazoles. Bioorganic & Medicinal Chemistry Letters, 21, 3536–3540.

    Article  Google Scholar 

  49. El-Seedi, H. R., El-Said, A. M. A., Khalifa, S. A. M., Goransson, U., Bohlin, L., Borg-Karlson, A., & Verpoorte, R. (2012). Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. Journal of Agricultural and Food Chemistry, 60, 10877–10895.

    Article  Google Scholar 

  50. Li, Y., & Liu, Z. (2012). Dendritic antioxidants with pyrazole as the core: Ability to scavenge radicals and to protect DNA. Free Radical Biology & Medicine, 52, 103–108.

    Article  Google Scholar 

  51. Bendary, E., Francis, R. R., Ali, H. M. G., Sarwat, M. I., & El Hady, S. (2013). Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Annals of Agricultural Science, 58, 173–181.

    Article  Google Scholar 

  52. Wang, L., Yang, F., Zhao, X., & Li, Y. (2019). Effects of nitro- and amino-group on the antioxidant activity of genistein: A theoretical study. Food Chemistry, 275, 339–345.

    Article  Google Scholar 

Download references

Acknowledgements

Hanan Elnagdy thanks ICCR, New Delhi, for a fellowship. DS is thankful to DST, New Delhi, India, for a research grant [No. EMR/2016/002345].

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diganta Sarma.

Ethics declarations

Research Involving Humans and Animals Statement

None.

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12668_2021_888_MOESM1_ESM.docx

Supplementary file1 The spectra analysis of all synthesized pyrazole compounds is included in the supplementary information document. (DOCX 4310 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elnagdy, H.M.F., Gogoi, N.G., Handique, J.G. et al. CuO-NPs/TFA: a New Catalytic System to Synthesize a Novel Series of Pyrazole Imines with High Antioxidant Properties. BioNanoSci. 11, 929–938 (2021). https://doi.org/10.1007/s12668-021-00888-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00888-5

Keywords

Navigation