Skip to main content
Log in

Pyrimidine Derivative Ameliorates Spinal Cord Injury via Anti-apoptotic, Anti-inflammatory, and Antioxidant Effects and by Regulating Rho GTPases

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

One of the most important strategies for the treatment of spinal cord injury is searching for new and effective pharmacological neuroprotectors and regeneration stimulators. The derivatives of pyrimidine are universal stimulators of the regeneration of various tissues as they support the recovery of nervous structures. The protective effect of the cocrystal of 1,2-dihydro-4,6-dimethyl-1-(2-hydroxyethyl)-pyrimidinone-2 with para-aminobenzoic acid (compound conjugate III, CCIII) was explored on a rat model with a contusion spinal cord injury. Injection of CCIII significantly reduced the expression of tumor necrosis factor α (TNF-α), inhibited the synthesis of myeloperoxidase (MPO), matrix metalloproteinase 9 (MPP9), cyclooxygenase-2 (COX2), and macrophage marker CD68, and increased the level of superoxide dismutase 1 (SOD1). Additionally, the expression of caspase-7 markers in the damaged tissue decreased under the action of CCIII. Treatment with the CCIII maintained a population of Olig2-positive myelin-forming cells at 30 days post-injury. The detected therapeutic effect is comparable with that of riluzole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bar-Or, A., Nuttall, R. K., Duddy, M., Alter, A., Kim, H. J., Ifergan, I., Pennington, C. J., Bourgoin, P., Edwards, D. R., & Yong, V. W. (2003). Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain, 126, 2738–2749. https://doi.org/10.1093/brain/awg285.

    Article  Google Scholar 

  2. Casella, G. T., Bunge, M. B., & Wood, P. M. (2004). Improved immunocytochemical identification of neural, endothelial, and inflammatory cell types in paraffin-embedded injured adult rat spinal cord. Journal of Neuroscience Methods, 139, 1–11. https://doi.org/10.1016/j.jneumeth.2004.04.008.

    Article  Google Scholar 

  3. Cheah, B. C., Vucic, S., Krishnan, A. V., & Kiernan, M. C. (2010). Riluzole, neuroprotection and amyotrophic lateral sclerosis. Current Medicinal Chemistry, 17, 1942–1199. https://doi.org/10.2174/092986710791163939.

    Article  Google Scholar 

  4. Chelyshev, Y. A., & Raginov, I. S. (2002). Effect of stimulation of nerve regeneration on posttraumatic neuronal survival in dorsal root ganglia. Bulletin of Experimental Biology and Medicine, 134, 597–599. https://doi.org/10.1023/A:1022929632535.

    Article  Google Scholar 

  5. Dubreuil, C. I., Winton, M. J., & McKerracher, L. (2003). Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. The Journal of Cell Biology, 162, 233–243. https://doi.org/10.1083/jcb.200301080.

    Article  Google Scholar 

  6. Erschbamer, M. K., Hofstetter, C. P., & Olson, L. (2005). RhoA, RhoB, RhoC, Rac1, Cdc42, and Tc10 mRNA levels in spinal cord, sensory ganglia, and corticospinal tract neurons and long-lasting specific changes following spinal cord injury. The Journal of Comparative Neurology, 484, 224–233. https://doi.org/10.1002/cne.20471.

    Article  Google Scholar 

  7. Fehlings, M. G., Nakashima, H., Nagoshi, N., Chow, D. S., Grossman, R. G., & Kopjar, B. (2016). Rationale, design and critical end points for the Riluzole in Acute Spinal Cord Injury Study (RISCIS): a randomized, double-blinded, placebo-controlled parallel multi-center trial. Spinal Cord, 54, 8–15. https://doi.org/10.1038/sc.2015.95.

    Article  Google Scholar 

  8. Figiel, I. (2008). Pro-inflammatory cytokine TNF-alpha as a neuroprotective agent in the brain. Acta Neurobiologiae Experimentalis (Wars), 68, 526–534.

    Google Scholar 

  9. Fleming, J. C., Norenberg, M. D., Ramsay, D. A., Dekaban, G. A., Marcillo, A. E., Saenz, A. D., Pasquale-Styles, M., Dietrich, W. D., & Weaver, L. C. (2006). The cellular inflammatory response in human spinal cords after injury. Brain, 129, 3249–3269. https://doi.org/10.1093/brain/awl296.

    Article  Google Scholar 

  10. Fontaine, V., Mohand-Said, S., Hanoteau, N., Fuchs, C., Pfizenmaier, K., & Eisel, U. (2002). Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. The Journal of Neuroscience, 22, RC216. https://doi.org/10.1523/JNEUROSCI.22-07-j0001.2002.

    Article  Google Scholar 

  11. Grossman, R. G., Fehlings, M. G., Frankowski, R. F., Burau, K. D., Chow, D. S., Tator, C., Teng, A., Toups, E. G., Harrop, J. S., Aarabi, B., Shaffrey, C. I., Johnson, M. M., Harkema, S. J., Boakye, M., Guest, J. D., & Wilson, J. R. (2014). A prospective, multicenter, phase I matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. Journal of Neurotrauma, 31, 239–255. https://doi.org/10.1089/neu.2013.2969.

    Article  Google Scholar 

  12. Kopp, M. A., Liebscher, T., Watzlawick, R., Martus, P., Laufer, S., Blex, C., Schindler, R., Jungehulsing, G. J., Knüppel, S., Kreutzträger, M., Ekkernkamp, A., Dirnagl, U., Strittmatter, S. M., Niedeggen, A., & Schwab, J. M. (2016). SCISSOR-Spinal Cord Injury Study on Small molecule-derived Rho inhibition: a clinical study protocol. BMJ Open, 6, e010651. https://doi.org/10.1136/bmjopen-2015-010651.

    Article  Google Scholar 

  13. Masgutov, R., Raginov, I., Fomina, G., Kozlova, M., & Chelyshev, Y. (2006). Stimulation of the rat’s sciatic nerve regeneration by local treatment with Xymedon. Cellular and Molecular Neurobiology, 26, 1413–1421. https://doi.org/10.1007/s10571-006-9055-7.

    Article  Google Scholar 

  14. Mukhamedshina, Y. O., Garanina, E. E., Masgutova, G. A., Galieva, L. R., Sanatova, E. R., Chelyshev, Y. A., & Rizvanov, A. A. (2016). Assessment of glial scar, tissue sparing, behavioral recovery and axonal regeneration following acute transplantation of genetically modified human umbilical cord blood cells in a rat model of spinal cord contusion. PLoS One, 11, e0151745. https://doi.org/10.1371/journal.pone.0151745.

    Article  Google Scholar 

  15. Nakazawa, T., Kayama, M., Ryu, M., Kunikata, H., Watanabe, R., Yasuda, M., Kinugawa, J., Vavvas, D., & Miller, J. W. (2011). Tumor necrosis factor-alpha mediates photoreceptor death in a rodent model of retinal detachment. Investigative Ophthalmology & Visual Science, 52, 1384–1391. https://doi.org/10.1167/iovs.10-6509.

    Article  Google Scholar 

  16. Pedraza CE, Taylor C, Pereira A, Seng M, Tham CS, Izrael M, Webb M, (2014) Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase. ASN Neuro, 6. https://doi.org/10.1177/1759091414538134.

  17. Pekny, M., Wilhelmsson, U., & Pekna, M. (2014). The dual role of astrocyte activation and reactive gliosis. Neuroscience Letters, 565, 30–38. https://doi.org/10.1016/j.neulet.2013.12.071.

    Article  Google Scholar 

  18. Povysheva, T., Shmarov, M., Logunov, D., Naroditsky, B., Shulman, I., Ogurcov, S., Kolesnikov, P., Islamov, R., & Chelyshev, Y. (2017). Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG. Journal of Neurosurgery. Spine, 27, 105–115. https://doi.org/10.3171/2016.9.SPINE15959.

    Article  Google Scholar 

  19. Povysheva, T. V., Semenov, V. E., Galyametdinova, I. V., Reznik, V. S., Knni, K. S., Kolesnikov, P. E., & Chelyshev, Y. A. (2016). New Xymedon analogues for stimulation of posttraumatic regeneration of the spinal cord in rats. Bulletin of Experimental Biology and Medicine, 162, 220–224. https://doi.org/10.1007/s10517-016-3580-2.

    Article  Google Scholar 

  20. Raginov, I. S., Chelyshev, Y. A., & Shagidullin, T. F. (2004). Interaction of sensory neurons and satellite cells during stimulation of nerve regeneration. Neuroscience and Behavioral Physiology, 34, 79–81. https://doi.org/10.1023/B:NEAB.0000003250.44648.5c.

    Article  Google Scholar 

  21. Satkunendrarajah, K., Nassiri, F., Karadimas, S. K., Lip, A., Yao, G., & Fehlings, M. G. (2016). Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection. Experimental Neurology, 276, 59–71. https://doi.org/10.1016/j.expneurol.2015.09.011.

    Article  Google Scholar 

  22. Sofroniew, M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends in Neurosciences, 32, 638–647. https://doi.org/10.1016/j.tins.2009.08.002.

    Article  Google Scholar 

  23. Takeuchi, H., Jin, S., Wang, J., Zhang, G., Kawanokuchi, J., Kuno, R., Sonobe, Y., Mizuno, T., & Suzumura, A. (2006). Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. The Journal of Biological Chemistry, 281, 21362–21368. https://doi.org/10.1074/jbc.M600504200.

    Article  Google Scholar 

  24. Venters, H. D., Dantzer, R., & Kelley, K. W. (2000). Tumor necrosis factor-alpha induces neuronal death by silencing survival signals generated by the type I insulin-like growth factor receptor. Annals of the New York Academy of Sciences, 917, 210–220. https://doi.org/10.1111/j.1749-6632.2000.tb05385.x.

    Article  Google Scholar 

  25. Viviani, B., Corsini, E., Galli, C. L., & Marinovich, M. (1998). Glia increase degeneration of hippocampal neurons through release of tumor necrosis factor-alpha. Toxicology and Applied Pharmacology, 150, 271–276. https://doi.org/10.1006/taap.1998.8406.

    Article  Google Scholar 

  26. Vyshtakalyuk, A. B., Nazarov, N. G., Zobov, V. V., Abdulkhakov, S. R., Minnekhanova, O. A., Semenov, V. E., Galyametdinova, I. V., Cherepnev, G. V., & Reznik, V. S. (2017). Evaluation of the hepatoprotective effect of L-ascorbate 1-(2-hydroxyethyl)-4,6-dimethyl-1,2-dihydropyrimidine-2-one upon exposure to carbon tetrachloride. Bulletin of Experimental Biology and Medicine, 162, 340–342. https://doi.org/10.1007/s10517-017-3610-8.

    Article  Google Scholar 

  27. Vyshtakalyuk, A. B., Nazarov, N. G., Zueva, I. V., Lantsova, A. V., Minnekhanova, O. A., Busygin, D. V., Porfiryev, A. G., Evtyugin, V. G., Reznik, V. S., & Zobov, V. V. (2013). Study of hepatoprotective effects of xymedon. Bulletin of Experimental Biology and Medicine, 155, 643–646. https://doi.org/10.1007/s10517-013-2215-0.

    Article  Google Scholar 

  28. Wu, X., & Xu, X. M. (2016). RhoA/Rho kinase in spinal cord injury. Neural Regeneration Research, 11, 23–27. https://doi.org/10.4103/1673-5374.169601.

    Article  Google Scholar 

  29. Wu, Y., Satkunendrarajah, K., & Fehlings, M. G. (2014). Riluzole improves outcome following ischemia-reperfusion injury to the spinal cord by preventing delayed paraplegia. Neuroscience, 265, 302–312. https://doi.org/10.1016/j.neuroscience.2014.01.059.

    Article  Google Scholar 

  30. Wu, Y., Satkunendrarajah, K., Teng, Y., Chow, D. S., Buttigieg, J., & Fehlings, M. G. (2013). Delayed post-injury administration of riluzole is neuroprotective in a preclinical rodent model of cervical spinal cord injury. Journal of Neurotrauma, 30, 441–452. https://doi.org/10.1089/neu.2012.2622.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank D. N. Fattakhova, Kazan State Medical University (Kazan, Russia) for their assistance in some experiments.

Funding

This work was funded by grant №14-50-00014 from the Russian Science Foundation and supported by Program of Competitive Growth of KFU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana V. Povysheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povysheva, T.V., Sabirova, S.R., Shashin, M.S. et al. Pyrimidine Derivative Ameliorates Spinal Cord Injury via Anti-apoptotic, Anti-inflammatory, and Antioxidant Effects and by Regulating Rho GTPases. BioNanoSci. 9, 224–234 (2019). https://doi.org/10.1007/s12668-018-0570-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0570-z

Keywords

Navigation