Skip to main content
Log in

A Systematic Review on Microhardness, Tensile, Wear, and Microstructural Properties of Aluminum Matrix Composite Joints Obtained by Friction Stir Welding: Past, Present and Its Future

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Friction stir welding (FSW) is a remarkable green solid-state joining process and it has been proven to be capable of joining advanced materials, such as aluminum matrix composites (AMCs) with sound-quality of joints. As a result, FSW is widely used in many sectors such as aviation, automotive, marine, and structural applications. So far various researchers carried out studies on joint characteristics of FSW and reported better microstructural and mechanical properties. This review study emphasizes various joint characteristics of AMCs namely microhardness, tensile, wear, and microstructural properties of joints obtained by FSW. Also, research work carried out by several researchers in the field of FSW for joining AMCs is summarized. In addition, future trends and challenges in joining of AMCs using FSW is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sachinkumar S, Narendranath S, and Chakradhar D, AIP Conf Proc 1943 (2018) 020118. https://doi.org/10.1063/1.5029694

    Article  CAS  Google Scholar 

  2. Omid K D, Alireza A, Ghasem A R, and Mohammad J N, J Manuf Process 68 (2021) 616. https://doi.org/10.1016/j.jmapro.2021.05.068

    Article  Google Scholar 

  3. Niraj K, and Ashish D, Mater Today Proc 26 (2020) 1666. https://doi.org/10.1016/j.matpr.2020.02.352

    Article  CAS  Google Scholar 

  4. Sachinkumar S, Narendranath S, and Chakradhar D, Silicon 11 (2019) 2557. https://doi.org/10.1007/s12633-018-0044-5

    Article  CAS  Google Scholar 

  5. Omar S, Hengan O, Sun W, and McCartney D G, Mater Des 86 (2015) 61. https://doi.org/10.1016/j.matdes.2015.07.071

    Article  CAS  Google Scholar 

  6. Anton N, Fedor I, Evgenii R, Pavel P, Mikhail P, Aleksey S, Sergio T A F, and Oleg P, J Mater Res Technol 9 (2020) 14454. https://doi.org/10.1016/j.jmrt.2020.10.008

    Article  CAS  Google Scholar 

  7. Rahul B, and Sachinkumar P, Mater Today Proc 82 (2023) 8. https://doi.org/10.1016/j.matpr.2022.10.129

    Article  CAS  Google Scholar 

  8. Nikolai K, Volker V, and Gürel C, J Manuf Process 36 (2018) 571. https://doi.org/10.1016/j.jmapro.2018.10.005

    Article  Google Scholar 

  9. Sachinkumar P, Narendranath S, and Chakradhar D, Mater Today Proc 45 (2021) 1. https://doi.org/10.1016/j.matpr.2020.09.025

    Article  CAS  Google Scholar 

  10. Ilangovan M, Rajendra B, and Balasubramanian S, Trans Nonferrous Met Soc China 25 (2015) 1080. https://doi.org/10.1016/S1003-6326(15)63701-3

    Article  CAS  Google Scholar 

  11. Uyime D, Maysa T, Carlos R O, Fernanda M Q, Aline S B, and Isold C, Corros Sci 131 (2018) 300. https://doi.org/10.1016/j.corsci.2017.12.001

    Article  CAS  Google Scholar 

  12. Amit G, and Rameshkumar G, Silicon 11 (2019) 51. https://doi.org/10.1007/s12633-018-9858-4

    Article  CAS  Google Scholar 

  13. Beytullah G, Erdinc K, Emel T, and Aydin S, Mater Des 56 (2014) 84. https://doi.org/10.1016/j.matdes.2013.10.090

    Article  CAS  Google Scholar 

  14. Baidehish S, and Jinu P, Materialia 2 (2018) 196. https://doi.org/10.1016/j.mtla.2018.08.003

    Article  Google Scholar 

  15. Texier D, Zedan Y, Amoros T, Feulvarch E, Stinville J C, and Bocher P, Mater Des 108 (2016) 217. https://doi.org/10.1016/j.matdes.2016.06.091

    Article  CAS  Google Scholar 

  16. Mohammad R J, Hesam P, Abdollah S, Sun I H, and Matteo P, Materials 14 (2021) 1290. https://doi.org/10.3390/ma14051290

    Article  CAS  Google Scholar 

  17. Sachinkumar P, Nagamadhu M, and Malyadri T, Mater Today Proc 82 (2023) 75. https://doi.org/10.1016/j.matpr.2022.11.362

    Article  CAS  Google Scholar 

  18. Natrayan L, and Senthilkumar M, Mater Today Proc 27 (2020) 306. https://doi.org/10.1016/j.matpr.2019.11.038

    Article  CAS  Google Scholar 

  19. Terry K, An Outsider Looks at Friction Stir Welding. Report: ANM-112N-05-06, July (2005)

  20. Krishna K M, and Kumar A, J Manuf Process 32 (2018) 625. https://doi.org/10.1016/j.jmapro.2018.03.034

    Article  Google Scholar 

  21. Khalique E A, Nagesh B M, Raju B S, and Drakshayani D N, Mater Today Proc 20 (2020) 108. https://doi.org/10.1016/j.matpr.2019.10.059

    Article  CAS  Google Scholar 

  22. Zhe L, Wei G, Huijun L, Dongpo W, and Lei C, J Manuf Process 84 (2022) 1122. https://doi.org/10.1016/j.jmapro.2022.10.069

    Article  Google Scholar 

  23. Meshram S D, and Reddy G M, Def Sci J 68 (2018) 512. https://doi.org/10.14429/dsj.68.12027

    Article  CAS  Google Scholar 

  24. Long L, Chen G, Zhang S, Liu T, and Shi Q, J Manuf Process 30 (2017) 562. https://doi.org/10.1016/j.jmapro.2017.10.023

    Article  Google Scholar 

  25. Chauhan P, Jain R, Pal S K, and Singh S B, J Manuf Process 34 (2018) 158. https://doi.org/10.1016/j.jmapro.2018.05.022

    Article  Google Scholar 

  26. Aghajani D H, and Abdolreza S, Sci Technol Weld Join 23 (2018) 209. https://doi.org/10.1080/13621718.2017.1364896

    Article  CAS  Google Scholar 

  27. Hamilton C, Dymek S, Kopyscianski M, Weglowska A, and Pietras A, Metals 8 (2018) 324. https://doi.org/10.3390/met8050324

    Article  CAS  Google Scholar 

  28. Marek S W, Arch Civ Mech Eng 18 (2018) 114. https://doi.org/10.1016/j.acme.2017.06.002

    Article  Google Scholar 

  29. Ashok B, and Murugan N, Mater Des 57 (2014) 383. https://doi.org/10.1016/j.matdes.2013.12.065

    Article  CAS  Google Scholar 

  30. Rajana V, Durjyodhan S, Vamsikrishna K, and Barnik S R, Mater Today Proc 18 (2019) 5276. https://doi.org/10.1016/j.matpr.2019.07.551

    Article  CAS  Google Scholar 

  31. Devaiah D, Kishore K, and Laxminarayana P, Mater Today Proc 5 (2018) 4607. https://doi.org/10.1016/j.matpr.2017.12.031

    Article  CAS  Google Scholar 

  32. Yuvaraj K P, Ashoka V P, Haribabu L, Madhubalan R, and Boopathiraja K P, Mater Today Proc 45 (2021) 919. https://doi.org/10.1016/j.matpr.2020.02.942

    Article  Google Scholar 

  33. Muthu K M, Maniraj J, Deepak R, and Anganan K, Mater Today Proc 5 (2018) 716. https://doi.org/10.1016/j.matpr.2017.11.138

    Article  CAS  Google Scholar 

  34. Sachinkumar S, Narendranath S, and Chakradhar D, Emerg Mater Res 7 (2018) 192. https://doi.org/10.1680/jemmr.17.00047

    Article  Google Scholar 

  35. Nandan R, DebRoy T, and Bhadeshia H K D H, Prog Mater Sci 53 (2008) 980. https://doi.org/10.1016/j.pmatsci.2008.05.001

    Article  CAS  Google Scholar 

  36. Caroline S, Terra J, and Luis L S, J Manuf Process 68 (2021) 1395. https://doi.org/10.1016/j.jmapro.2021.06.052

    Article  Google Scholar 

  37. Singh B, Saxena K, and Singhal P, J Mater Eng Perform 30 (2021) 8606. https://doi.org/10.1007/s11665-021-06017-3

    Article  CAS  Google Scholar 

  38. Hasan M J, Mehran T E, Amir C, Reza K, and Razieh Y, CIRP J Manuf Sci Technol 35 (2021) 69. https://doi.org/10.1016/j.cirpj.2021.05.007

    Article  Google Scholar 

  39. Yuvaraj K P, Ashoka V P, Haribabu L, Madhubalan R, and Boopathiraja K P, Mater Today Proc 45 (2021) 919. https://doi.org/10.1016/j.matpr.2020.02.942

    Article  Google Scholar 

  40. Anna J, Jacek T, and Dariusz F, Materials 14 (2021) 3244. https://doi.org/10.3390/ma14123244

    Article  CAS  Google Scholar 

  41. Nidhi S, Arshad N S, Zahid A K, and Mohsin T M, Mater Manuf Process 33 (2018) 786. https://doi.org/10.1080/10426914.2017.1388526

    Article  CAS  Google Scholar 

  42. Sanjeev V, and Vinod K, J Mech Eng Sci 235 (2021) 1.

    Google Scholar 

  43. Ashu G, Madhav R, and Anirban B, CIRP J Manuf Sci Technol 29 (2020) 99. https://doi.org/10.1016/j.cirpj.2020.03.001

    Article  Google Scholar 

  44. Zhou L, Zhang R X, Li G H, Zhou W L, Huang Y X, and Song X G, J Manuf Process 36 (2018) 1. https://doi.org/10.1016/j.jmapro.2018.09.017

    Article  Google Scholar 

  45. Ghiasvand A, Hassanifard S, Saad S, and Varvani F A, Sci Technol Weld Join 26 (2021) 493. https://doi.org/10.1080/13621718.2021.1950500

    Article  CAS  Google Scholar 

  46. Rajendra S, Cheraku S, Rajnish K, and Ashis K S, Mater Today Proc 66 (2022) 1361. https://doi.org/10.1016/j.matpr.2022.05.154

    Article  CAS  Google Scholar 

  47. Kumar R, Kumar H, Kumar S, and Chohan J S, Mater Today Proc 48 (2022) 1594. https://doi.org/10.1016/j.matpr.2021.09.491

    Article  CAS  Google Scholar 

  48. Kumar S, Chaubey S K, and Sethi D, J Mater Eng Perform 31 (2022) 2074. https://doi.org/10.1007/s11665-021-06315-w

    Article  CAS  Google Scholar 

  49. Malleswararao N B, Varaha S V, and Hari C, Eng Res Express 3 (2021) 035026. https://doi.org/10.1088/2631-8695/ac1a5a

    Article  Google Scholar 

  50. Jayaprakash S, Chandran S, Sathish T, Gugulothu B, Ramesh R, Sudhakar M, and Ram S, Adv. Mater. Sci. Eng. 2021 (2021) 1. https://doi.org/10.1155/2021/7387296

    Article  CAS  Google Scholar 

  51. Dmitry O B, Mohammed A J, Wanich S, Mahmoud E A, Aleksandra S, Dariusz F, and Hamed A D, Materials 14 (2021) 7883. https://doi.org/10.3390/ma14247883

    Article  CAS  Google Scholar 

  52. Pranesh B, Tamilselvam P, and Suresh K S, J Mater Eng Perform 31 (2022) 8967. https://doi.org/10.1007/s11665-022-06908-z

    Article  CAS  Google Scholar 

  53. Yumeng S, Wei L, Yupeng L, Wenbiao G, and Chuan J, Materials 12 (2022) 408. https://doi.org/10.3390/met12030408

    Article  CAS  Google Scholar 

  54. Rahul K, Kishor J, Anwar A, Murshid I, and Chiranjit S, Mater Today Commun 33 (2022) 104785. https://doi.org/10.1016/j.mtcomm.2022.104785

    Article  CAS  Google Scholar 

  55. Nikul P, Bhatt K D, and Vishal M, Procedia Technol 23 (2016) 558. https://doi.org/10.1016/j.protcy.2016.03.063

    Article  Google Scholar 

  56. Yang X, Liming K, Yuqing M, and Pengliang N, Mater Charact 174 (2021) 111022. https://doi.org/10.1016/j.matchar.2021.111022

    Article  CAS  Google Scholar 

  57. Ramachandran K, Murugan N, and Shashi S, Mater Sci Eng A 639 (2015) 219. https://doi.org/10.1016/j.msea.2015.04.089

    Article  CAS  Google Scholar 

  58. Yanying H, Huijie L, and Shuaishuai D, Mater Sci Eng A 804 (2021) 140587. https://doi.org/10.1016/j.msea.2020.140587

    Article  CAS  Google Scholar 

  59. Ravi B, Balu N B, and Udaya P J, Mater Today Proc 2 (2015) 2984. https://doi.org/10.1016/j.matpr.2015.07.282

    Article  CAS  Google Scholar 

  60. Chengcha D, Xue W, Qiuhong P, Kailin X, Mansheng N, and Junjian L, J Manuf Process 38 (2019) 122. https://doi.org/10.1016/j.jmapro.2019.01.010

    Article  Google Scholar 

  61. Joao V S A, Aline F S B, Uyime D, Caruline S C M, Fernanda M Q, Maysa T, Antonello A, and Isolda C, Corros Eng Sci Technol 54 (2019) 575. https://doi.org/10.1080/1478422X.2019.1637077

    Article  Google Scholar 

  62. Wang D, Xiao B L, Ni D R, and Ma Z Y, Acta Metall Sinica 27 (2014) 816. https://doi.org/10.1007/s40195-014-0143-2

    Article  CAS  Google Scholar 

  63. Ahmed B, Mohammed E, and Galal N, Int J Adv Sci Technol 29 (2020) 1322.

    Google Scholar 

  64. Xiangbin W, and Diana A L, Materialia 24 (2022) 101508. https://doi.org/10.1016/j.mtla.2022.101508

    Article  CAS  Google Scholar 

  65. Gurpreet S, Sanjeev G, Georgina M, and Neeraj S, J Mech Sci Technol 32 (2018) 579. https://doi.org/10.1007/s12206-018-0105-5

    Article  Google Scholar 

  66. Raju P M, Ravi K, and Surjya K P, Mater Charact 160 (2020) 110115. https://doi.org/10.1016/j.matchar.2019.110115

    Article  CAS  Google Scholar 

  67. Ahmed M M Z, Ataya S, El-Sayed S M M, Ammar H R, and Ahmed E, J Mater Process Technol 242 (2017) 77. https://doi.org/10.1016/j.jmatprotec.2016.11.024

    Article  CAS  Google Scholar 

  68. Lin C, Chunming W, Lingda X, Xiong Z, and Gaoyang M, Mater Des 191 (2020) 108625. https://doi.org/10.1016/j.matdes.2020.108625

    Article  CAS  Google Scholar 

  69. Taher A S, Nagi M S, Ibrahim M M, Yajun Y, Xiaoyuan J, Xu S, and Jianxin Z, Vacuum 188 (2021) 110216. https://doi.org/10.1016/j.vacuum.2021.110216

    Article  CAS  Google Scholar 

  70. Salehi M, Saadatmand M, and Aghazadeh M J, Trans Nonferrous Met Soc China 22 (2012) 1055. https://doi.org/10.1016/S1003-6326(11)61283-1

    Article  CAS  Google Scholar 

  71. Beygi R, Pouraliakbar H, Torabi K, Eisaabadi B G, Fallah V, Kim S K, Shi R, and Silva L F M, J Manuf Process 70 (2021) 152. https://doi.org/10.1016/j.jmapro.2021.08.049

    Article  Google Scholar 

  72. Taher A S, Jianxin Z, Xu S, Yajun Y, and Xiaoyuan J, Proc Manuf 37 (2019) 555. https://doi.org/10.1016/j.promfg.2019.12.088

    Article  Google Scholar 

  73. Sachinkumar S, Narendranath S, and Chakradhar D, Mater Today Proc 20 (2020) A1. https://doi.org/10.1016/j.matpr.2020.01.266

    Article  CAS  Google Scholar 

  74. Yahya B, Huseyin U, and Serdar S, J Compos Mater 45 (2011) 2237. https://doi.org/10.1177/0021998311401067

    Article  CAS  Google Scholar 

  75. Huijie L, Yanying H, Chao D, and Dusan P S, Mater Character 123 (2017) 9. https://doi.org/10.1016/j.matchar.2016.11.011

    Article  CAS  Google Scholar 

  76. Behrooz R, Kamran D, and Seyyed E M, J Manuf Process 52 (2020) 152. https://doi.org/10.1016/j.jmapro.2020.01.046

    Article  Google Scholar 

  77. Zhenglin D, Hui C, Ming J T, Guijun B, and Chee K C, J Manuf Process 36 (2018) 33. https://doi.org/10.1016/j.jmapro.2018.09.024

    Article  Google Scholar 

  78. Durjyodhan S, Uttam A, Tanmoy M, Shashank S, and Barnik S R, Mater Today Proc 46 (2021) 9180. https://doi.org/10.1016/j.matpr.2020.01.198

    Article  CAS  Google Scholar 

  79. Kalaiselvan K, Dinaharan I, and Murugan N, Mater Des 55 (2014) 176. https://doi.org/10.1016/j.matdes.2013.09.067

    Article  CAS  Google Scholar 

  80. Logendran D, Chandramohan D, and Sathish T, Mater Today Proc 33 (2020) 4663. https://doi.org/10.1016/j.matpr.2020.08.310

    Article  CAS  Google Scholar 

  81. Subramanya R P B, Arun S, Mervin H, and Shrikantha R, Mater Today Proc 24 (2020) 1183. https://doi.org/10.1016/j.matpr.2020.04.432

    Article  CAS  Google Scholar 

  82. Mohammad S M I, Kaveh M, Mohammad A A, Sufian R, Mohd R M, Farazila Y, Mohd J, Nukman Y, and Mohd S A K, J Mater Res Technol 15 (2021) 2735. https://doi.org/10.1016/j.jmrt.2021.09.037

    Article  CAS  Google Scholar 

  83. Marie N, Avettand F, and Aude S, Mater Charact 120 (2016) 1. https://doi.org/10.1016/j.matchar.2016.07.010

    Article  CAS  Google Scholar 

  84. Liua H J, Feng J C, Fujii H, and Nogi K, Int J Mach Tools Manuf 45 (2005) 1635. https://doi.org/10.1016/j.ijmachtools.2004.11.026

    Article  Google Scholar 

  85. Devender K, Denny J O, Uttam A, Tanmoy M, Barnik S R, and Subhash C S, Mater Today Proc 46 (2021) 9378. https://doi.org/10.1016/j.matpr.2020.02.933

    Article  CAS  Google Scholar 

  86. Makeshkumar M, Surender S R, Arunprakash S, Madesh R, Sasi M, and Sudharsan K, Mater Today Proc 47 (2021) 5239. https://doi.org/10.1016/j.matpr.2021.05.563

    Article  CAS  Google Scholar 

  87. Huaqiang L, Yulong W, and Shengdan L, Mater Charact 146 (2018) 159. https://doi.org/10.1016/j.matchar.2018.09.043

    Article  CAS  Google Scholar 

  88. Sachinkumar S, Narendranath S, and Chakradhar D, Trans Indian Inst Met 73 (2020) 2269. https://doi.org/10.1007/s12666-020-02035-2

    Article  CAS  Google Scholar 

  89. Contorno D, Faga M G, Fratini L, Settineri L, and Gautier C G, Key Eng Mater 410 (2009) 235. https://doi.org/10.4028/www.scientific.net/KEM.410-411.235

    Article  Google Scholar 

  90. Umesh Kumar S, and Avanish Kumar D, Mater Today Proc 47 (2021) 2720. https://doi.org/10.1016/j.matpr.2021.02.811

    Article  CAS  Google Scholar 

  91. Wang D, Xiao B L, Wang Q Z, and Ma Z Y, J Mater Sci Technol 30 (2014) 54. https://doi.org/10.1016/j.jmst.2013.09.018

    Article  CAS  Google Scholar 

  92. Lan Z, Huilong Z, Shengci L, Hongjin Z, Jiqiang C, and Liang Q, Int J Fatigue 135 (2020) 105556. https://doi.org/10.1016/j.ijfatigue.2020.105556

    Article  CAS  Google Scholar 

  93. Won B L, Yun M Y, and Seung B J, Mater Trans 45 (2004) 170. https://doi.org/10.2320/matertrans.45.1700

    Article  Google Scholar 

  94. Liu H J, Feng J C, Fujii H, and Nogi K, Int J Mach Tools Manuf 45 (2005) 1635. https://doi.org/10.1016/j.ijmachtools.2004.11.026

    Article  Google Scholar 

  95. Hu Z L, Wang X S, Pang Q, Huang F, Qin X P, and Hua L, Mater Charact 99 (2015) 180. https://doi.org/10.1016/j.matchar.2014.11.015

    Article  CAS  Google Scholar 

  96. Subramanya R P, Arun S, Mervin A H, and Shrikantha S R, Weld World 66 (2022) 93. https://doi.org/10.1007/s40194-021-01187-z

    Article  CAS  Google Scholar 

  97. Amit G, and Ramesh G, Metallogr Microstruct Anal 7 (2018) 524. https://doi.org/10.1007/s13632-018-0468-8

    Article  CAS  Google Scholar 

  98. Srinivasa Rao M S, Ravi Kumar B V R, and Manzoor H M, Mater Today Proc 4 (2017) 1394. https://doi.org/10.1016/j.matpr.2017.01.161

    Article  Google Scholar 

  99. Krasnowski K, Hamilton C, and Dymek S, Arch Civ Mech Eng 15 (2015) 131. https://doi.org/10.1016/j.acme.2014.02.001

    Article  Google Scholar 

  100. Kumar A, Mahapatra M M, Jha P K, Mandal N R, and Devuri V, Mater Des 59 (2014) 406. https://doi.org/10.1016/j.matdes.2014.02.063

    Article  CAS  Google Scholar 

  101. Marzoli L M, Strombeck A V, Santos J F, Gambaro C, and Volpone L M, Compos Sci Technol 66 (2006) 363. https://doi.org/10.1016/j.compscitech.2005.04.048

    Article  CAS  Google Scholar 

  102. Cavaliere P, Cerri E, Marzulli L, and Santos J, Appl Compos Mater 11 (2004) 247. https://doi.org/10.1023/B:ACMA.0000035478.71092.ec

    Article  CAS  Google Scholar 

  103. Ceschini L, Boromei I, Minak G, Morri A, Tarterini F, and Composites Part A, Appl Sci Manuf 38 (2007) 1200. https://doi.org/10.1016/j.compositesa.2006.06.009

    Article  CAS  Google Scholar 

  104. Minak G, Ceschini L, Boromei I, and Ponte M, Int J Fatigue 32 (2010) 218. https://doi.org/10.1016/j.ijfatigue.2009.02.018

    Article  CAS  Google Scholar 

  105. Periyasamy P, Mohan B, and Balasubramanian V, J Mater Eng Perform 21 (2012) 2417. https://doi.org/10.1007/s11665-012-0176-5

    Article  CAS  Google Scholar 

  106. Periyasamy P, Mohan B, Balasubramanian V, Rajakumar S, and Venugopal S, Trans Nonferrous Met Soc China 23 (2013) 942. https://doi.org/10.1016/S1003-6326(13)62551-0

    Article  CAS  Google Scholar 

  107. Dinaharan I, and Murugan N, Met Mater Int 18 (2012) 135. https://doi.org/10.1007/s12540-012-0016-z

    Article  CAS  Google Scholar 

  108. Feng A H, Xiao B L, and Ma Z Y, Compos Sci Technol 68 (2008) 2141. https://doi.org/10.1016/j.compscitech.2008.03.010

    Article  CAS  Google Scholar 

  109. Rohan A, Piyush G, Dinesh S, and Hitesh D, Mater. Today Proc 18 (2020) 4092. https://doi.org/10.1016/j.matpr.2019.07.353

    Article  CAS  Google Scholar 

  110. Ni D R, Chen D L, Wang D, Xia B L, and Ma Z Y, Mater Sci Eng A 608 (2014) 1. https://doi.org/10.1016/j.msea.2014.04.060

    Article  CAS  Google Scholar 

  111. Akeem Y A, Fadi A B, and Zuhair M G, J Manuf Process 33 (2018) 111. https://doi.org/10.1016/j.jmapro.2018.04.019

    Article  Google Scholar 

  112. Qiushi G, Hua Y, Yang Q, Peilei Z, Jialong G, Zhengfei C, and Zhishui Y, Opt Laser Technol 113 (2019) 182. https://doi.org/10.1016/j.optlastec.2018.12.046

    Article  CAS  Google Scholar 

  113. Adel M H, Mohammed A, Tarek Q, and Ahmed G, Mater Manuf Process 27 (2012) 1419. https://doi.org/10.1080/10426914.2012.700156

    Article  CAS  Google Scholar 

  114. Bahuguna S, Arya P K, and Patel V K, J Mech Eng 70 (2020) 21. https://doi.org/10.2478/scjme-2020-0017

    Article  Google Scholar 

  115. Biing H Y, Hsien C T, Fuang Y H, and Long C L, Int J Mach Tools Manuf 45 (2005) 251. https://doi.org/10.1016/j.ijmachtools.2004.08.015

    Article  Google Scholar 

  116. Seyed S M, Mohammad A, Soheil E, Kord S, Hamouda A M S, Praveennath G K, and Keshavamurthy R, J Alloys Compd 712 (2017) 795. https://doi.org/10.1016/j.jallcom.2017.04.114

    Article  CAS  Google Scholar 

  117. Mohammad H S, Mostafa A, Parviz A, and Abolfazl K, Int J Adv Manuf Technol 91 (2017) 1391. https://doi.org/10.1007/s00170-016-9853-0

    Article  Google Scholar 

  118. Shindo D J, Rivera A R, and Murr L E, J Mater Sci 37 (2002) 4999. https://doi.org/10.1023/A:1021023329430

    Article  CAS  Google Scholar 

  119. Tracie P, Acta Astronaut 93 (2014) 366. https://doi.org/10.1016/j.actaastro.2013.07.023

    Article  CAS  Google Scholar 

  120. Xiao L, Xiu L, Peng Y, Shi Q, Yong Z, Ming W, Yao C, and Dong X, Opt Laser Technol 78 (2016) 87. https://doi.org/10.1016/j.optlastec.2015.10.005

    Article  CAS  Google Scholar 

  121. Sachinkumar S, Narendranath S, and Chakradhar D, Trans Indian Inst Met 74 (2021) 1303. https://doi.org/10.1007/s12666-021-02214-9

    Article  CAS  Google Scholar 

  122. Shaik M, Jimmy K, Raviraj V, and Jha P K, J Alloys Compd 826 (2020) 154184. https://doi.org/10.1016/j.jallcom.2020.154184

    Article  CAS  Google Scholar 

  123. Akbar H, Arch Civ Mech Eng 19 (2019) 137. https://doi.org/10.1016/j.acme.2018.09.009

    Article  Google Scholar 

  124. Qi W, Mingyang L, Yuanhang G, Jianfu S, Hanlu W, and Yongqin C, Nucl Mater Energy 25 (2020) 100804. https://doi.org/10.1016/j.nme.2020.100804

    Article  Google Scholar 

  125. Guoa J, Amira S, Gougeon P, and Chen X G, Mater Charact 62 (2011) 865. https://doi.org/10.1016/j.matchar.2011.06.007

    Article  CAS  Google Scholar 

  126. Zhikang S, Xinqi Y, Zhaohua Z, Lei C, and Yuhuan Y, Mater Des 49 (2013) 181. https://doi.org/10.1016/j.matdes.2013.01.066

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research seed Grant Ref. No. RU: EST:ME: 2022: 1 funded by REVA University Bengaluru, India. Authors acknowledge the support from REVA University for funding and providing the facilities to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachinkumar Patil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biradar, R., Patil, S. A Systematic Review on Microhardness, Tensile, Wear, and Microstructural Properties of Aluminum Matrix Composite Joints Obtained by Friction Stir Welding: Past, Present and Its Future. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03303-1

Keywords

Navigation