Skip to main content
Log in

Hot Working Property Study of 7055 Aluminum Alloy Based on Hot Shear-Compression Deformation

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

To fill the gap in the study of hot working properties of materials under complex stress and strain states, novel shear compression specimens were introduced to study the hot deformation behavior of 7055 aluminum alloy through the Gleeble-3500 thermal simulation machine. The flow curves were obtained using the Mises equivalent equation, and the processing maps were made. In addition, the microstructures after deformation were analyzed with OM and EBSD techniques. The results showed that the effect of shear-compression deformation was mainly at the oblique slots of the specimen, where the peak stress was 1.5 times that in the uniaxial compression test at 450 °C-0.01 s−1. The stress rose to the peak and then continued to fall with strain, while the steady-state flow phenomenon only appeared at high temperatures and low rates. The processing maps showed that the desired hot working area was at 450 °C-5 s−1, and the organization analysis supports this result. It was found that higher temperatures would significantly increase the uniformity of organization in the narrow gap region. Higher strain rates would promote dynamic recrystallization (DRX) nucleation at high temperatures and effectively discourage DRX grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang P, Li Y, Liu Y, Zhang Y, and Liu J, Vacuum 171 (2020) 109005. https://doi.org/10.1016/j.vacuum.2019.109005

    Article  ADS  CAS  Google Scholar 

  2. Jia Z, Xie Z, Xiang K, Ding L, Weng Y, and Liu Q, Mater Charact 183 (2022) 111619. https://doi.org/10.1016/j.matchar.2021.111619

    Article  CAS  Google Scholar 

  3. Wang X, Pan Q, Xiong S, Liu L, Sun Y, and Wang W, Trans Nonferrous Metals Soc China 28 (2018) 1484–1494. https://doi.org/10.1016/S1003-6326(18)64789-2

    Article  CAS  Google Scholar 

  4. Tang J, Yu B, Zhang J, Xu F, and Bao C, Trans Nonferrous Metals Soc China 30 (2020) 1227. https://doi.org/10.1016/S1003-6326(20)65291-8

    Article  CAS  Google Scholar 

  5. Lv L, Shao L, Lin H, and Jin T, Mater Today Commun 31 (2022) 103551. https://doi.org/10.1016/j.mtcomm.2022.103551

    Article  CAS  Google Scholar 

  6. Zhou L, Jiang B, Cui T, Zhang D, He J, and Liu Y, J Iron Steel Res Int 21 (2014) 1111. https://doi.org/10.1016/S1006-706X(14)60191-6

    Article  CAS  Google Scholar 

  7. Liang X K, Sun X J, Liu Q Y, and Dong H, Acta Metall Sin (Engl Lett) 19 (2006) 265. https://doi.org/10.1016/S1006-7191(06)60054-9

    Article  CAS  Google Scholar 

  8. Lin G, Zheng X, Yang W, Feng D, and Peng D, Acta Metallurgica Sin (Engl Lett) 22 (2009) 110–116. https://doi.org/10.1016/S1006-7191(08)60077-0

    Article  CAS  Google Scholar 

  9. Liu S, Wang S, Ye L, Deng Y, and Zhang X, Mater Sci Engg: A 677 (2016) 203. https://doi.org/10.1016/j.msea.2016.09.047

    Article  CAS  Google Scholar 

  10. Kumar R, Singh Bhadauria S, Sharma V, and Kumar M, Mater Today Proc (2022). https://doi.org/10.1016/j.matpr.2022.10.111

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eivani A R, Jafarian H R, and Zhou J, J Manuf Process 57 (2020) 881–892. https://doi.org/10.1016/j.jmapro.2020.07.011

    Article  Google Scholar 

  12. Luo R, Cao Y, Qiu Y, Yuan Z, Li S, and Cheng X, Xiyou Jinshu/Chin J Rare Metals 46 (2022) 144. https://doi.org/10.13373/j.cnki.cjrm.XY19110013

    Article  Google Scholar 

  13. Rittel D, Lee S, and Ravichandran G, Exp Mech 42 (2002) 58. https://doi.org/10.1007/BF02411052

    Article  CAS  Google Scholar 

  14. Moemeni S, Zarei-Hanzaki A, Abedi H R, and Torabinejad V, Exp Mech 52 (2012) 629. https://doi.org/10.1007/s11340-011-9525-9

    Article  CAS  Google Scholar 

  15. Sang D, Fu R, Wang Y, and Li Y, Mater Sci Eng: A 747 (2019) 130. https://doi.org/10.1016/j.msea.2018.12.059

    Article  CAS  Google Scholar 

  16. Luo R, Cao Y, Bian H, Chen L, Peng C-T, Cao F, et al., Mater Charact 178 (2021) 111203. https://doi.org/10.1016/j.matchar.2021.111203

    Article  CAS  Google Scholar 

  17. El-Shenawy E H, Mater Today Proc 28 (2020) 998. https://doi.org/10.1016/j.matpr.2019.12.339

    Article  CAS  Google Scholar 

  18. Yu D J, Xu D S, Wang H, Zhao Z B, Wei G Z, and Yang R, J Mater Sci Technol 35 (2019) 1039–1043. https://doi.org/10.1016/j.jmst.2018.12.026

    Article  Google Scholar 

  19. Xu L, Zhou D, Xu C, Zhang H, Qu W, Xie P, et al., Mater Today Commun 34 (2023) 105138. https://doi.org/10.1016/j.mtcomm.2022.105138

    Article  CAS  Google Scholar 

  20. Ma H, Lu K, and Liu X, Structures 47 (2023) 1250–1264. https://doi.org/10.1016/j.istruc.2022.11.017

    Article  Google Scholar 

  21. Dorogoy A, and Rittel D, Exp Mech 45 (2005) 167. https://doi.org/10.1007/BF02428190

  22. Dorogoy A, and Rittel D, Exp Mech 45 (2005) 178. https://doi.org/10.1007/BF02428191

    Article  Google Scholar 

  23. Shao Y, Shi J, Pan J, Liu Q, Yan L, and Guo P, Mater Today Commun 31 (2022) 103593. https://doi.org/10.1016/j.mtcomm.2022.103593

    Article  CAS  Google Scholar 

  24. Chegini M, Aboutalebi M R, Seyedein S H, Ebrahimi G R, and Jahazi M, J Manuf Process 56 (2020) 916. https://doi.org/10.1016/j.jmapro.2020.05.008

    Article  Google Scholar 

  25. Deng L, Zhang H, Li G, Tang X, Yi P, Liu Z, et al., Trans Nonferrous Metals Soc China 32 (2022) 2150–2163. https://doi.org/10.1016/S1003-6326(22)65937-5

    Article  CAS  Google Scholar 

  26. Khorshidi H, Kermanpur A, Rastegari H, Ghassemali E, and Somani M C, Mater Today Commun 27 (2021) 102352. https://doi.org/10.1016/j.mtcomm.2021.102352

    Article  CAS  Google Scholar 

  27. Shi Z, Yan X, Duan C, Song J, Zhao M, and Wang J, J Iron Steel Res Int 24 (2017) 625. https://doi.org/10.1016/S1006-706X(17)30094-8

    Article  Google Scholar 

  28. Qunying Y, Wenyi L, Zhiqing Z, Guangjie H, and Xiaoyong L, Rare Metal Mater Eng 47 (2018) 409. https://doi.org/10.1016/S1875-5372(18)30080-8

    Article  Google Scholar 

  29. Chen L, Ding H, Liu T, Luo R, Cao Y, Zhang Y, et al., Mater Des 212 (2021) 110195. https://doi.org/10.1016/j.matdes.2021.110195

    Article  CAS  Google Scholar 

  30. Luo R, Cao Y, Cui S, Cao Y, Peng C-T, Yang Y, et al., Trans Indian Inst Metals 74 (2021) 1809. https://doi.org/10.1007/s12666-021-02259-w

    Article  CAS  Google Scholar 

  31. Sang D, Fu R, and Li Y, Mater Charact 122 (2016) 154. https://doi.org/10.1016/j.matchar.2016.10.025

    Article  CAS  Google Scholar 

  32. Zhang J, Yi Y, Huang S, Mao X, He H, Tang J, et al., Mater Sci Eng: A 804 (2021) 140650. https://doi.org/10.1016/j.msea.2020.140650

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by the Natural Science Foundation of Jiangsu Province (BK20220548); Graduate Research and Innovation Projects of Jiangsu Province (SJCX22_1860); the State Key Laboratory of Mechanical Transmissions Project (SKLMT-MSKFKT-202219)

Author information

Authors and Affiliations

Authors

Contributions

RL contributed to conceptualization, funding acquisition, writing—review & editing, and methodology. YZ and TL done investigation and writing—original draft. YQ, TT, and YY helped in visualization. LC and ZZ done investigation.

Corresponding author

Correspondence to Rui Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, R., Zhou, Y., Liu, T. et al. Hot Working Property Study of 7055 Aluminum Alloy Based on Hot Shear-Compression Deformation. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-023-03226-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-023-03226-3

Keywords

Navigation