Skip to main content
Log in

Flow Behavior and Activation Energy Evolution of 7075-T6 Al Alloy During Hot Deformation

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this paper, the hot deformation behavior of 7075-T6 aluminum alloy was studied by hot compression experiments. The results show that the flow stress exhibits a continuous decrease at low temperatures. At high temperatures, the flow stress exhibits a steady state. The softening at low temperatures is dominated by dynamic recovery (DRV), accompanied by coarsening of precipitates, resulting in a continuous decrease in flow stress. As the temperature increases, dynamic recrystallization (DRX) gradually strengthens, and the DRX mechanism gradually transforms from continuous dynamic recrystallization to geometric dynamic recrystallization. Compared to the strain-compensated Arrhenius-type model, the novel modified constitutive equation has a higher prediction accuracy, with a correlation coefficient as high as 0.9991 and an average relative absolute error as low as 2.0734%. The activation energy decreases with increasing temperature and strain rate. At low temperatures and low strain rates, the activation energy decreases with increasing strain but shows the opposite trend at high temperatures and high strain rates. Based on the activation energy maps, the optimum hot-working parameters for this alloy are temperature 653–733 K and strain rate 0.001–0.1 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X.S. Zhang, Y.J. Chen, and J.L. Hu, Prog. Aerosp. Sci. 97, 22 (2018).

    Article  Google Scholar 

  2. J. Shin, T. Kim, D.E. Kim, D. Kim, and K. Kim, J. Alloys Compd. 698, 577 (2017).

    Article  Google Scholar 

  3. M. Liu, Z.D. Shan, X.Y. Li, and Y. Zang, J. Mater. Res. Technol. 24, 724 (2023).

    Article  Google Scholar 

  4. T. Zhang, S.H. Zhang, L. Li, S.H. Lu, and H. Gong, J. Cent. South. Univ. 26(11), 2930 (2019).

    Article  Google Scholar 

  5. H.F. Yang, R.S. Huang, Y.L. Zhang, S.J. Zheng, M.N. Li, and K. Sivasankar, Ceram. Int. 49(1), 1165 (2023).

    Article  Google Scholar 

  6. P.M. Keshtiban and F. Bashirzadeh, JOM 75(3), 905 (2023).

    Article  Google Scholar 

  7. D. Trimble and G. O’Donnell, Mater. Des. 76, 150 (2015).

    Article  Google Scholar 

  8. C.M. Sellars and W.J. Mctegart, Acta Metall. Sin. 14(9), 1136 (1966).

    Article  Google Scholar 

  9. H.R. Rezaei Ashtiani, M.H. Bisadi, and H. Parsa, Mater. Sci. Eng. A 545, 61 (2012).

    Article  Google Scholar 

  10. J. Li, F.G. Li, J. Cai, R.T. Wang, Z.W. Yuan, and F.M. Xue, Mater. Des. 42, 369 (2012).

    Article  Google Scholar 

  11. H.R. Rezaei Ashtiani and P. Shahsavari, Mech. Mater. 100, 209 (2016).

    Article  Google Scholar 

  12. C.L. Gan, K.H. Zheng, W.J. Qi, and M.J. Wang, Trans. Nonferrous Met. Soc. China 24(11), 3486 (2014).

    Article  Google Scholar 

  13. Q.S. Dai, Y.L. Deng, J.G. Tang, and Y. Wang, Trans. Nonferrous Met. Soc. China 29(11), 2252 (2019).

    Article  Google Scholar 

  14. N. Haghdadi, A. Hanzaki, and H.R. Abedi, Mater. Sci. Eng. A 535, 252 (2012).

    Article  Google Scholar 

  15. H.B. Yang, H.Y. Bu, M.N. Li, and X. Lu, Materials 14(20), 5986 (2021).

    Article  Google Scholar 

  16. X.Y. Peng, W.S. Su, D. Xiao, and G.F. Xu, JOM 70(6), 993 (2018).

    Article  Google Scholar 

  17. L. Liu, Y.X. Wu, H. Gong, and K. Wang, Trans. Nonferrous Met. Soc. China 29(3), 448 (2019).

    Article  Google Scholar 

  18. J.C. Long, Q.X. Xia, G.F. Xiao, Y. Qin, and S. Yuan, Int. J. Mech. Sci. 191, 106069 (2021).

    Article  Google Scholar 

  19. C.J. Shi, W.M. Mao, and X.G. Chen, Mater. Sci. Eng. A 571, 83 (2013).

    Article  Google Scholar 

  20. S. Wang, L.G. Hou, J.R. Luo, J.S. Zhang, and L.Z. Zhuang, J. Mater. Process. Tech. 225, 110 (2015).

    Article  Google Scholar 

  21. P. Zhou, L. Deng, M. Zhang, P. Gong, and X.Y. Wang, J. Mater. Eng. Perform. 28, 6209 (2019).

    Article  Google Scholar 

  22. S.D. Liu, J.H. You, X.M. Zhang, Y.L. Deng, and Y.B. Yuan, Mater. Sci. Eng. A 527, 1200 (2010).

    Article  Google Scholar 

  23. G.S. Peng, K.H. Chen, S.Y. Chen, and H.C. Fang, Mater. Sci. Eng. A 641, 237 (2015).

    Article  Google Scholar 

  24. H. Li, Y.C. Huang, and Y. Liu, Mater. Sci. Eng. A 878, 145236 (2023).

    Article  Google Scholar 

  25. D.F. Li, D.Z. Zhang, S.D. Liu, Z.J. Shan, X.M. Zhang, Q. Wang, and S.Q. Han, Trans. Nonferrous Met. Soc. China 26, 1491 (2016).

    Article  Google Scholar 

  26. J. Zhang, B.Q. Chen, and B.X. Zhang, Mater. Des. 34, 15 (2012).

    Article  Google Scholar 

  27. H.R. Rezaei Ashtiani and P. Shahsavari, Trans. Nonferrous Met. Soc. China 30, 2927 (2020).

    Article  Google Scholar 

  28. Y.W. Sun, Q.L. Pan, Z.Q. Huang, W.Y. Wang, X.D. Wang, M.J. Li, and J.P. Lai, Prog. Nat. Sci. 28, 635 (2018).

    Article  Google Scholar 

  29. P.S. Sahoo, A. Meher, M.M. Mahapatra, and P.R. Vundavilli, JOM 74, 3887 (2022).

    Article  Google Scholar 

  30. Y.J. Guo, J.F. Li, D.D. Lu, H. Ning, W. You, and Y.L. Chen, J. Mater. Eng. Perform. 31, 2743 (2022).

    Article  Google Scholar 

  31. L. Couturier, A. Deschamps, F.D. Geuser, F. Fazeli, and W.J. Poole, Scripta Mater. 136, 120 (2017).

    Article  Google Scholar 

  32. Z.C. Sun, L.S. Zheng, and H. Yang, Mater Charact 90, 71 (2014).

    Article  Google Scholar 

  33. G.W. Bo, R.B. Qin, W. Li, J. Tang, F.L. Jiang, and G. Xiao, Mater. Des. 232, 112119 (2023).

    Article  Google Scholar 

  34. Q.Y. Yang, D. Yang, Z.Q. Zhang, L.F. Cao, X.D. Wu, and G.J. Huang, Trans. Nonferrous Met. Soc. China 26, 649 (2016).

    Article  Google Scholar 

  35. L. Xu, D.Y. Zhou, C.C. Xu, H.Y. Zhang, W.K. Qu, and P.F. Xie, Mater. Today Commun. 34, 105138 (2023).

    Article  Google Scholar 

  36. K. Li, Q.L. Pan, R.S. Li, S.H. Liu, Z.Q. Huang, and X. He, J. Mater. Eng. Perform. 28, 981 (2019).

    Article  Google Scholar 

  37. F. Li, C.C. Zhu, S.J. Li, H. Jiang, P. Zhang, and R.G. Yang, J. Mater. Res. Technol. 20, 3918 (2022).

    Article  Google Scholar 

  38. C. Xu, J. Huang, F. Jiang, and Y. Jiang, Mater. Char. 183, 111629 (2022).

    Article  Google Scholar 

  39. H. Wang, G.L. Qin, and C.G. Li, J. Mater. Res. Technol. 19, 3302 (2022).

    Article  Google Scholar 

  40. Y.X. Xia, X.D. Shu, Q.D. Zhang, Z. Pater, Z.X. Li, and H.J. Xu, J. Mater. Res. Technol. 26, 1325 (2023).

    Article  Google Scholar 

  41. K.T. Son, M.H. Kim, S.W. Kim, J.W. Lee, and S.K. Hyun, J. Alloys Compd. 740, 96 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the Key Research & Development Program of Yunnan Province (202103AA080017 and CBN21281004A), the Major Science and Technology Project of Yunnan Province (202002AB080001-4), Yunnan Ten Thousand Talents Plan Young & Elite Talents Project (YNWR-QNBJ-2020-020) and the Innovation Team Cultivation Project of Yunnan Province (202005AE160016). The authors are also grateful to Yunnan Aluminum Co., Ltd., for providing the original materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanju Zheng or Mengnie Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Qian, Z., Sun, P. et al. Flow Behavior and Activation Energy Evolution of 7075-T6 Al Alloy During Hot Deformation. JOM (2024). https://doi.org/10.1007/s11837-024-06567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06567-6

Navigation