Skip to main content
Log in

Surface Modification of Ti3Al2.5V Titanium Alloy Using Laser Texturing With Improved Wettability, Corrosion and Bioactivity Behaviour

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present work aims to improve the wettability, corrosion and bioactivity performance of Ti3Al2.5V alloy through laser surface texturing. For experimental investigations, three different texture patterns such as hexagon, concentric circles and an array of lines were fabricated using nanosecond fibre laser with an intrinsic wavelength of 1064 nm. The wettability behaviour of the surface was determined using contact angle goniometer with two different liquid medium: distilled water and simulated body fluid (SBF), and the corrosion behaviour was examined using potentiodynamic polarization and electrochemical impedance spectroscopy method. Laser surface texturing enhanced the hydrophilicity of the specimens with values in the range of 32.94–57.27º for distilled water and 45.12–69º for SBF with both the liquid medium following Wenzel model. The corrosion rate was lowered because of laser treatment (from 1.18 \(\times {10}^{-1}\) mm/year for untextured Ti-3Al2.5V to 5.46 \(\times {10}^{-3}\) mm/year for hexagon, 2.99 \(\times {10}^{-3}\) mm/year for concentric circles and 1.70 mm\(\times {10}^{-2}\)/year for lines). The improvement in the corrosion rate of the specimens was because of the refinement in the grain structure due to rapid solidification along with reduction in β/α volume ratio. In vitro bioactivity test revealed that the textured samples depicts enhancement in the deposition rate of calcium and phosphate ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sahoo P, Das S K, and Davim J P, Tribology of Materials for Biomedical Applications, Woodhead Publishing, Sawsto (2019).

    Book  Google Scholar 

  2. Zhao X, Zhang H, Liu.H, Li S, et al., Surf. Coat. Technol. 409 (2021) 126904. https://doi.org/10.1016/j.surfcoat.2021.126904

    Article  CAS  Google Scholar 

  3. Janda A, Ebenbauer S, Prestl A, et al., Mater. Sci. Technol. 38 (2022) 957. https://doi.org/10.1080/02670836.2022.2068243

    Article  CAS  Google Scholar 

  4. Liu X, Chu P K, and Ding C, Mater. Sci. Eng. R Rep 47 (2005) 49. https://doi.org/10.1016/j.mser.2004.11.001

    Article  CAS  Google Scholar 

  5. Mihalko W M, Haider H, Kurtz S, et al., J. Orthop. Res 38 (2020) 1436. https://doi.org/10.1002/jor.24750

    Article  PubMed  Google Scholar 

  6. Bailey R, and Sun Y, J. Mater. Eng. Perform. 24 (2015) 1669. https://doi.org/10.1007/s11665-015-1441-1

    Article  CAS  Google Scholar 

  7. Lin Z, Li S J, Sun F, et al., Surf. Coat. Technol. 365 (2019) 208. https://doi.org/10.1016/j.surfcoat.2018.09.003

    Article  CAS  Google Scholar 

  8. Bahi R, Nouveau C, and Beliardouh N E, Surf Coat. Technol 385 (2020) 125412. https://doi.org/10.1016/j.surfcoat.2020.125412

    Article  CAS  Google Scholar 

  9. Dehghanghadikolaei A, Ibrahim H, Amerinatanzi A, et al., J. Mater. Sci. 54 (2019) 7333–7355. https://doi.org/10.1007/s10853-019-03375-1

    Article  CAS  Google Scholar 

  10. Kumari R, Pfleging W, Besser H, et al., Opt. Laser Technol. 116 (2019) 196–213. https://doi.org/10.1016/j.optlastec.2019.03.017

    Article  CAS  Google Scholar 

  11. Kurella A, and Dahotre N B, J. Biomater. Appl 20 (1), (2005) 5–50. https://doi.org/10.1177/0885328205052974

    Article  PubMed  Google Scholar 

  12. Kumari R, Scharnweber T, Pfleging W, et al., Appl. Surf. Sci. 357 (2015) 750–758. https://doi.org/10.1016/j.apsusc.2015.08.255

    Article  CAS  Google Scholar 

  13. Wang C, Li Z, Zhao H, et al., Tribol. Int. 152 (2020) 106475. https://doi.org/10.1016/j.triboint.2020.106475

    Article  CAS  Google Scholar 

  14. Çaha I, Alves A C, Rocha L A, et al., J. Bio-Tribo-Corros 6 (2020) 1–31. https://doi.org/10.1007/s40735-020-00432-0

    Article  Google Scholar 

  15. Yue T M, Yu J K, Mei Z, et al., Mater. Lett 52 (2002) 206. https://doi.org/10.1016/S0167-577X(01)00395-0

    Article  CAS  Google Scholar 

  16. Jiaqiang E, Jin Y, Deng Y, et al., Adv. Mater. Interfaces 5 (2017) 1701052. https://doi.org/10.1002/admi.201701052

    Article  Google Scholar 

  17. Mirhosseini N, Crouse P L, Schmidth M J J, Li L, and Garrod D, Appl. Surf. Sci 25 (2007) 7738. https://doi.org/10.1016/j.apsusc.2007.02.168

    Article  CAS  Google Scholar 

  18. Pfleging W, Kumari R, Besser H, et al., Appl. Surf. Sci 355 (2015) 104. https://doi.org/10.1016/j.apsusc.2015.06.175

    Article  CAS  Google Scholar 

  19. Li C, Yang L, Liu N, et al., Surf. Coat. Technol. 388 (2020) 125594. https://doi.org/10.1016/j.surfcoat.2020.125594

    Article  CAS  Google Scholar 

  20. Cunha A, Paula A, Oliveira V, et al., Appl. Surf. Sci 265 (2013) 688. https://doi.org/10.1016/j.apsusc.2012.11.085

    Article  CAS  Google Scholar 

  21. Hao L, Lawrence J, and Li L, Appl. Surf. Sci. 247 (1–4), (2005) 602–606. https://doi.org/10.1016/j.apsusc.2005.01.165

    Article  CAS  Google Scholar 

  22. Lawrence J, and Li L, Laser Modification of the Wettability Characteristics of Engineering Materials, Professional Engineering publishing, London (2001).

    Google Scholar 

  23. Long M, and Rack H J, Biomaterials 19 (1998) 1621.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang L C, and Chen L Y, Adv. Eng. Mater 21 (2019) 1801215. https://doi.org/10.1002/adem.201801215.10.1016/S0142-9612(97)00146-4

    Article  Google Scholar 

  25. Tjandra J, Alabort E, Barba D, et al., Mater. Sci. Technol (2023). https://doi.org/10.1080/02670836.2023.2230417

    Article  Google Scholar 

  26. Long J, Cao Z, Lin C, et al., Appl. Surf. Sci 464 (2018) 412. https://doi.org/10.1016/j.apsusc.2018.09.055

    Article  CAS  Google Scholar 

  27. Han Y, Liu F, Zhang K, et al., J. Refract. Met. Hard Mater. 95 (2020) 105463. https://doi.org/10.1016/j.ijrmhm.2020.105463

    Article  CAS  Google Scholar 

  28. Riveiro A, Maçon A L, and del Val J, Front. Phys 6 (2018) 16. https://doi.org/10.3389/fphy.2018.00016

    Article  Google Scholar 

  29. Zhou C L, Ngai T W L, and Li L J, Mater. Sci. Technol. 32 (8), (2016) 805–812. https://doi.org/10.1179/1743284715Y.0000000091

    Article  CAS  Google Scholar 

  30. Li H, Wang X, Zhang J, et al., Int. J. Adv. Manuf. Technol. 119 (2022) 5993–6005. https://doi.org/10.1007/s00170-022-08710-6

    Article  Google Scholar 

  31. Moura C G, Carvalho O, Gonçalves L M V, et al., Mater. Sci. Eng. C 104 (2019) 109901. https://doi.org/10.1016/j.msec.2019.109901

    Article  CAS  Google Scholar 

  32. Yoruç A B H, and Keleşoğlu E, Laser Med. Sci. 34 (2019) 1567. https://doi.org/10.1007/s10103-019-02746-z

    Article  Google Scholar 

  33. Santana M, Estevez J O, Agarwal V, et al., Nanoscale Res. Lett. 11 (2016) 1. https://doi.org/10.1186/s11671-016-1658-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukund Dutt Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests and personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabir, S., Sharma, M.D. Surface Modification of Ti3Al2.5V Titanium Alloy Using Laser Texturing With Improved Wettability, Corrosion and Bioactivity Behaviour. Trans Indian Inst Met 77, 1093–1103 (2024). https://doi.org/10.1007/s12666-023-03203-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03203-w

Keywords

Navigation