Skip to main content
Log in

Sliding Wear Resistance Behaviour of Al–Zn–Mg–Cu/SiC/B4C/Porcelain Composites Using Fuzzy Model and Salp Swarm Algorithm

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The prime motive of this experimental research work is to investigate and compare the wear behaviour of aluminium (AA7075/Al–Zn–Mg–Cu) alloy metal matrix composites enriched with three different ceramics reinforcements (SiC/7wt%, B4C/7wt%, and porcelain/7wt%) prepared via liquid metallurgy stir casting route. Sliding wear performance for all three aluminium-ceramics matrix composites was evaluated on a pin-on-disc tribometer as per Taguchi’s L25 orthogonal array by varying normal loads, sliding velocities and sliding distances. The experimental results revealed that porcelain-reinforced composite (AA7075/7wt%porcelain) achieved better resistance property against sliding wear compared to AA7075/7wt%SiC and AA7075/7wt%B4C composites. Further, the fuzzy logic model was developed to evaluate wear loss for three composites with absolute accuracy. Finally, a metaheuristic salp swarm algorithm (SSA) was utilized to minimize wear loss for three composites. The wear loss value attained through SSA exhibits the lowest one in comparison with conventional Taguchi and fuzzy logic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Miracle D B, Compos Sci Technol 65 (2005) 2526.

    Article  CAS  Google Scholar 

  2. Hashim J, Looney L, and Hashmi M S J, J Mater Process Technol 92 (1999) 1.

    Article  Google Scholar 

  3. Bakshi S R, Lahiri D, and Agarwal A, Int Mater Rev 55 (2010) 41.

    Article  CAS  Google Scholar 

  4. Amirkhanlou S, Jamaati R, Niroumand B, and Toroghinejad M R, Mater Manuf Processes 26 (2011) 902.

    Article  CAS  Google Scholar 

  5. Rajak S K, Aherwar A, and Unune D R, Materials 12 (2019) 1574.

    Article  CAS  Google Scholar 

  6. Bera S, Chowdhury S G, Estrin Y, and Manna I, J Alloys Compd 548 (2013) 257.

    Article  CAS  Google Scholar 

  7. Kumar A, Patnaik A, and Bhat I K, Silicon 11 (2019) 1295.

    Article  CAS  Google Scholar 

  8. Toptan F, Kilicarslan A, and Kerti I, Mater Sci Forum 636–637 (2010) 192.

    Article  Google Scholar 

  9. Prakash K S, Moorthy R S, Gopal P M, and Kavimani V, Int J Refract Hard Met 54 (2016) 223.

    Article  Google Scholar 

  10. Kumar P N, Rajadurai A, and Muthuramalingam T, Silicon 10 (2018) 1723.

    Article  CAS  Google Scholar 

  11. Manoj M, Jinu G R, and Muthuramalingam T, Silicon 10 (2018) 2287.

    Article  CAS  Google Scholar 

  12. Arunachalam R, Krishnan P K, and Muraliraja R, J Manuf Process 42 (2019) 213.

    Article  Google Scholar 

  13. Patil O M, Khedkar N N, Sachit T S, and Singh T P, Mater Today Proc 5 (2018) 5802.

    Article  CAS  Google Scholar 

  14. Sachit T, and Khan M A, Mater Today Proc 5 (2018) 5901.

    Article  CAS  Google Scholar 

  15. Kumar G V, Rao C, and Selvaraj N, Compos B Eng 43 (2012) 1185.

    Article  Google Scholar 

  16. Guo H, Zhang Z W, Zhang Y, and Chen D, J Alloys Compd 829 (2020) 154521

    Article  CAS  Google Scholar 

  17. Uthayakumar M, Aravindan S, and Rajkumar K, Mater Des 47 (2013) 456.

    Article  CAS  Google Scholar 

  18. Henriques B, Gasik M, Souza J C M, Nascimento R M D, Soares D, and Silva F S, J Mech Behav Biomed 30 (2014) 103.

    Article  CAS  Google Scholar 

  19. Dev S, Aherwar A, and Patnaik A, Silicon 11 (2019) 1557.

    Article  CAS  Google Scholar 

  20. Ravindran P, Manisekar K, and Rathika P, Mater Des 45 (2013) 561. https://doi.org/10.1016/j.matdes.2012.09.015

    Article  CAS  Google Scholar 

  21. Aherwar A, Patnaik A, and Pruncu C I, J Mater Res Technol 9 (2020) 9882.

    Article  CAS  Google Scholar 

  22. Zadeh L A, Inf Sci 178 (2008) 2751.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vimal Kumar Pathak or Basil Kuriachen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajak, S.K., Aherwar, A., Choudhary, R. et al. Sliding Wear Resistance Behaviour of Al–Zn–Mg–Cu/SiC/B4C/Porcelain Composites Using Fuzzy Model and Salp Swarm Algorithm. Trans Indian Inst Met 76, 2493–2502 (2023). https://doi.org/10.1007/s12666-023-02970-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02970-w

Keywords

Navigation