Skip to main content
Log in

The Cu/Nb Ratio Influencing Microstructure, Mechanical and Electrical Properties in As-cast Al-3Cu-xNb Alloys

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work, solidification experiments were performed with Al-3CuxNb alloys (x = 0.5, 3 and 5wt.%). The role of the Cu/Nb ratio was investigated on thermal parameters such as growth and cooling rates (VL and TR), structure, microhardness (HV) and electrical properties such as electrical resistance, resistivity and conductivity (R, ρ, and σ, respectively). A columnar to equiaxed grain transition (CET) was observed for lower Cu/Nb ratios. The typical solidification microstructure was quantified by means of secondary dendritic spacings (λ2). It was observed that the decrease of the Cu/Nb ratio with the increase of the Nb content increased the HV, R, and ρ values, but the σ values decreased. It was deduced that the harder particles of the Al3Nb and Al2Cu intermetallic phases contributed to the increase of HV, while the Al3Nb phase influenced the decrease of electrical conductivity with the increase of Nb content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Böyük U, Maraşlı N, Çadırlı E, Kaya H, and Keşlioğlu K, Curr. Appl. Phys. 12 (2012) 7.

    Article  Google Scholar 

  2. Kaygısız Y, and Maraşlı N, J. Alloys Compd. 618 (2015) 197.

    Article  Google Scholar 

  3. Kaya H, Böyük U, Çadırlı E, and Maraşlı N, Mater. Des. 34 (2012) 707.

    Article  CAS  Google Scholar 

  4. Engin S, Büyük U, and Maraşlı N, J. Alloys Compd. 660 (2016) 23.

    Article  CAS  Google Scholar 

  5. Çadırlı E, Met. Mater. Int. 19 (2013) 411.

    Article  Google Scholar 

  6. Kaya H, Böyük U, Çadırlı E, and Maraşlı N, Met. Mater. Int. 19 (2013) 39.

    Article  CAS  Google Scholar 

  7. Büyük U, Engin S, Kaya H, Çadırlı E, and Maraşlı N, Phys. Met. Metallogr. 121 (2020) 78.

    Article  Google Scholar 

  8. Kaygısız Y, and Maraşlı N, Phys. Met. Metallogr. 118 (2017) 389.

    Article  Google Scholar 

  9. Kaya H, Böyük U, Engin S, Çadirli E, and Maraşli N, J. Electron. Mater. 39 (2010) 303.

    Article  CAS  Google Scholar 

  10. Kaya H, Çadırlı E, Böyük U, and Maraşlı N, Appl. Surf. Sci. 255 (2008) 3071.

    Article  CAS  Google Scholar 

  11. Barros A, Cruz C, Silva A P, Cheung N, Garcia A, Rocha O, and Moreira A, Acta Metall. Sin. Engl. Lett. 32 (2019) 695.

    Article  CAS  Google Scholar 

  12. Magno I A, Souza F A, Costa M O, Nascimento J M, Silva A P, Costa T S, and Rocha O L, Mater. Sci. Technol. 35 (2019) 791.

    Article  CAS  Google Scholar 

  13. Barbosa C R, Machado G H, Azevedo H M, Rocha F S, José Filho C, Pereira A A and Rocha O L, Met. Mater. Int. 26, 370 (2020).

  14. Moreira Coutinho M, Saraiva Silva J I, Primo Sousa T and Monteiro Rosa D, Metals 9, 713 (2019).

  15. Albuquerque Sousa de S M, de Gouveia G L and Spinelli J E, Mater. Sci. Eng. A 835 142680 (2022).

  16. Dillon T, Mendes G, Azevedo H, Rodrigues H, Pereira P and Rocha O, Trans. Indian Inst. Met. 75, 1429 (2022) https://doi.org/10.1007/s12666-021-02501-5.

  17. Dong H B, In World Congress on Engineering (2007), pp. 1257.

  18. Glazov V M, Vigdorovich V N, Korolkov G A, and Neorg Zh, Khim. 4 (1959) 1620.

    Google Scholar 

  19. Glazov V M, Lazarev G P and Korolkov G, Metalloved. Term. Obrab. Metal. 48 (1959).

  20. Wilhelm H A, Ellis T G, U.S. Atom. Energy Commun. IS-193 (1960), pp. 41.

  21. Baron V V, Savitskii E M, and Neorg Zh, Khim. 6 (1961) 182.

    CAS  Google Scholar 

  22. Richards M J, Mem. Sci. Rev. Metall. 61 (1964) 265.

    Google Scholar 

  23. Lundin C E and Yamamoto A S, Trans. Metall. Soc. AIME 236, (1966).

  24. Jorda J L, Flükiger R, and Muller J, J. Common Met. 75 (1980) 227.

    Article  CAS  Google Scholar 

  25. Elliott R P, and Shunk F A, Bull. Alloy Phase Diagr. 2 (1981) 75.

    Article  CAS  Google Scholar 

  26. Munitz A, Gokhale A B, and Abbaschian R, J. Mater. Sci. 35 (2000) 2263.

    Article  CAS  Google Scholar 

  27. Zhu Z, Du Y, Zhang L, Chen H, Xu H, and Tang C, J. Alloys Compd. 460 (2008) 632.

    Article  CAS  Google Scholar 

  28. Nandi P, Chattopadhyay P P, Pabi S K, and Manna I, Mater. Sci. Eng. A 359 (2003) 11.

    Article  Google Scholar 

  29. Schmid-Fetzer R, In Light Metal Systems. Part 2, (ed) Effenberg G, Ilyenko S. Springer, Berlin, Heidelberg (2005), p. 1.

  30. Brazilian Association of Technical Standards, NBR 6814 – Electric cables and wires—Test of electrical resistance, ABNT, Rio de Janeiro (1986).

    Google Scholar 

  31. D. Bouchard, J.S. Kirkaldy J.S, Metall. Mater. Trans. B. 28 (1997), 651.

  32. C.A. Siqueira, N. Cheung, A. Garcia, Metall. Mater. Trans. A. 33 (2002), 2107

  33. Cooper P, Cook R, Kearns M A, Effects of Residual Transition Metal Impurities on Electrical Conductivity and Grain Refinement of EC Grade Aluminium. The 126th TMS Annual Meeting & Exhibition, Orlando (1997).

Download references

Acknowledgements

The authors acknowledge the financial support provided by IFPA—Federal Institute of Education, Science and Technology of Pará, Postgraduate Program in Materials Engineering (PPGEMat/IFPA), UFPA—Federal University of Pará, and CNPq—National Council for Scientific and Technological Development (Grant 304924/2020-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otávio Rocha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, G., Azevedo, H., Dillon, T. et al. The Cu/Nb Ratio Influencing Microstructure, Mechanical and Electrical Properties in As-cast Al-3Cu-xNb Alloys. Trans Indian Inst Met 76, 1453–1465 (2023). https://doi.org/10.1007/s12666-022-02863-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02863-4

Keywords

Navigation