Skip to main content
Log in

New Trends in Friction Stir Processing: Rapid Cooling—A Review

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Friction stir processing (FSP) is a new, promising technique for the grain refinement of materials. The microstructure evolution during FSP is the result of the processing parameters, dimensions of the tool, as well as the method of cooling the sample. FSP is most often carried out under natural cooling conditions in still air. However, increasingly more often additional sample cooling systems are used, which allow a significant increase in the cooling rate. Cooling substances differ in terms of their cooling mechanism, but also in terms of the requirements that must be met to make the cooling process effective and feasible. In this study, an analysis of the most commonly used methods for the rapid cooling of FSP-treated samples was performed. The characteristics of the individual solutions and used cooling agents were made; the advantages, disadvantages and limitations of the individual solutions were indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang P, and Wang D, Mater Res Express 7 (2020) 096404.

  2. Kusinski J, Kac S, Kopia A, Radziszewska A, Rozmus-Górnikowska M, Major B, Major L, Marczak J, and Lisiecki A, Bull Pol Acad Sci Tech Sci 60 (2012) 711.

    CAS  Google Scholar 

  3. Chmielewski T, Golański D, and Włosiński W, Bull Pol Acad Sci Tech Sci 63 (2015) 449.

    CAS  Google Scholar 

  4. Gwoździk M, and Nitkiewicz Z, Opt Appl 39 (2009) 853.

    Google Scholar 

  5. Mishra R S, Mahoney M W, McFadden S X, Mara N A, and Mukherjee A K, Scr Mater 42 (1999) 163.

    Article  Google Scholar 

  6. Mishra R S, and Mahoney M W, Mater Sci Forum 357-359 (2001) 507.

    Article  Google Scholar 

  7. Wang W, Han P, Peng P, Zhang T, Liu Q, Yuan S-N, Huang L-Y, Yu H-L, Qiao K, and Wang K-S, Acta Metall Sin (Engl Lett) 33 (2020) 43.

    Article  CAS  Google Scholar 

  8. Satyanarayana M V N V, Adepu K, and Chauhan K, Met Mater Int. (2020)

  9. Bheekya Naik R, Venkateswara Reddy K, Madhusudhan Reddy G, and Arockia Kumar R, Fusion Eng Des 161 (2020) 111962.

  10. Chen X, Zhang Y, and Cong M, Vacuum 175 (2020) 109292.

  11. Iwaszko J, and Kudła K, Proc of 28th International Conf on Metallurgy and Materials, Brno (2019) 1051.

  12. Seifiyan H, Heydarzadeh Sohi M, Ansari M, Ahmadkhaniha D, and Saremi M, J Magnes Alloy 7 (2019) 605.

    Article  CAS  Google Scholar 

  13. Iwaszko J, Kudła K, Fila K, and Strzelecka M, Arch Metall Mater 61 (2016)1209.

    Article  CAS  Google Scholar 

  14. Wang W, Han P, Yuan J, Peng P, Liu Q, Qiang F, Qiao K, and Wang K-S, Acta Metall Sin (Engl Lett) 33 (2020) 147.

    Article  CAS  Google Scholar 

  15. Tanigawa H, Ozawa K, Morisada Y, Noh S, and Fujii H, Fusion Eng Des 98–99 (2015) 2080.

    Article  CAS  Google Scholar 

  16. Huang C, Li W, Zhang Z, Fu M, Planche M, Liao H, and Montavon G, Surf Coat Tech 296 (2016) 69.

    Article  CAS  Google Scholar 

  17. Rahbar-Kelishami A, Abdollah-Zadeh A, Hadavi M M, Banerji A, Alpas A, and Gerlich A P Mater Des 86 (2015) 98.

  18. Chen Y C, and Nakata K, Mater Charact 50 (2009) 1471.

    Article  CAS  Google Scholar 

  19. Mirshekari B, Zarei-Hanzaki A, Barabi A, Abedi H R, Lee S J, and Fujii H Mater Sci Eng A, 799 (2021) 140057.

  20. Ma C Y, Zhou L, Zhang R X, Li D G, Shu F Y, Song X G, and Zhao Y Q, J Mater Res Technol 9 (2020) 8296.

    Article  CAS  Google Scholar 

  21. Singh S, Kaur M, and Saravanan I, Mater Today: Proc 22 (2020) 482.

    CAS  Google Scholar 

  22. Huang Y, Meng X, Xie Y, Wan L, Lv Z, Cao J, and Feng J, Compos Part A: Appl Sci Manuf 105 (2018) 235.

    Article  CAS  Google Scholar 

  23. Barmouz M, Shahi P, and Asadi P, Advances in Friction-Stir Welding and Processing, Woodhead Publishing Series in Welding and Other Joining Technologies (2014) 601.

  24. Iwaszko J, and Kudła K, Bull Pol Acad Sci Tech Sci 67 (2019) 185.

    CAS  Google Scholar 

  25. Kurtyka P, Rylko N, Tokarski T, Wójcicka A, and Pietras A, Compos Struct 133 (2015) 959.

    Article  Google Scholar 

  26. Tewari A, Spowart J E, Gokhale A M, Mishra R S, and Miracle D B, Mater Sci Eng A 428 (2006) 80.

    Article  CAS  Google Scholar 

  27. Mishra R S, and Ma Z Y, Mater Sci Eng R 50 (2005) 1.

    Article  CAS  Google Scholar 

  28. Sato Y S, Urata M, and Kokawa H, Metall Mater Trans A 33 (2002) 625.

    Article  Google Scholar 

  29. Arbegast W J, and Hartley P J, Proc of the fifth international conference on trends in welding research, Pine Mountain, USA, (1998) 541.

  30. Xue P, Xiao B L, and Ma Z Y, Mater Des 56 (2014) 848.

    Article  CAS  Google Scholar 

  31. Singh H, Kumar P, and Singh B, Asian J Eng Appl Tech 5 (2016) 40.

    Google Scholar 

  32. Luo X, Cao G, Zhang W, Qiu C, and Zhang D, Mater 10 (2017) 253.

    Article  CAS  Google Scholar 

  33. Moaref A, and Rabiezadeh A, Trans Nonferrous Met Soc China 30 (2020) 972.

    Article  CAS  Google Scholar 

  34. Feng X, Liu H, and Lippold J C, Mater Charact 82 (2013) 97.

    Article  CAS  Google Scholar 

  35. Molla Ramezani N, Davoodi B, Farahani M, and Khanli A H, J Braz Soc Mech Sci Eng 41 (2019) 503.

    Article  CAS  Google Scholar 

  36. Patil N A, Pedapati S R, and Mamat O B, Arch Metall Mater 65 (2020) 441.

    CAS  Google Scholar 

  37. Iwaszko J, Kudła K, and Fila K, Bull Pol Acad Sci Tech Sci 66 (2018) 713.

    CAS  Google Scholar 

  38. Iwaszko J, Kudła K, Fila K, and Caban R, Compos Theory Pract 17 (2017) 51.

    CAS  Google Scholar 

  39. Swathi I B, Raju L S, and Ramulu P J, J Eng Des Tech 18 (2019) 653.

    Google Scholar 

  40. El-Mahallawy N A, Zoalfakar S, and Maboud A A G A, IOP Conf Ser: Mater Sci Eng 634 (2019) 012046.

  41. Iwaszko J, and Kudła K, Bull Pol Acad Sci Tech Sci 68 (2020) 555.

    Google Scholar 

  42. Maji, P, Ghosh, S K, Nath, R K, and Karmakar R, J Braz Soc Mech Sci Eng 42 (2020) 191.

    Article  CAS  Google Scholar 

  43. Yang X, Dong P, Yan Z, Cheng B, Zhai X, Chen H, Zhang H, and Wang W, J Alloys Compd 836 (2020) 155411.

  44. Ai X, and Yue Y, High Temp Mater Proc 37 (2018) 693.

    Article  CAS  Google Scholar 

  45. Chen Y, Jiang Y, Zhang F, Ding H Zhao J, and Ren Z, Trans Indian Inst Met 71 (2018) 3077.

    Article  CAS  Google Scholar 

  46. Heidarpour A, Ahmadifard S, and Rohani N, J Adv Mater Process 6 (2018) 47.

    Google Scholar 

  47. Alavi Nia A, Omidvar H, and Nourbakhsh S H, Mater Des 52 (2013) 615.

    Article  CAS  Google Scholar 

  48. Satyanarayana M V N V, Reddy P, and Kumar A, Mater Today: Proc, (2020) (in press).

  49. Yazdipour A, Shafiei A, and Dehghani M K, Mater Sci Eng A 527 (2009) 192.

    Article  CAS  Google Scholar 

  50. Su J-Q, Nelson T W, and Sterling C J, Scr Mater 52 (2005) 135.

    Article  CAS  Google Scholar 

  51. Jemielniak K, Mechanik 8–9 (2017) 708.

    Google Scholar 

  52. Kumar A, Kumar Godasu A, Pal K, Mula S Mater Charact 144 (2018) 440.

    Article  CAS  Google Scholar 

  53. Orozco-Caballero A, Cepeda-Jiménez C M, Hidalgo-Manrique P, Rey P, Gesto D, Verdera D, Ruano O A, and Carreño F, Mater Chem Phys 142 (2013) 182.

    Article  CAS  Google Scholar 

  54. Ammouri A H, Kridli G T, Ayoub G, and Hamade R F, Proc of the World Congress on Engineering, UK 2 (2014).

  55. Ramaiyan S, Chandran R, and Santhanam S K V, Mod Mech Eng 7 (2017) 144.

    Article  CAS  Google Scholar 

  56. Patel V, Badheka V, Li W, and Akkireddy S, Arch Civ Mech Eng 19 (2019) 1368.

    Article  Google Scholar 

  57. Liu X C, Sun Y F, and Fujii H, Mater Des 129 (2017) 151.

    Article  CAS  Google Scholar 

  58. Iwaszko J, and Kudła K, Int J Adv Manuf Technol 116 (2021) 1309.

    Article  Google Scholar 

  59. Albakri A N, Mansoor B, Nassar H, and Khraisheh M K, Adv Mater Res 445 (2012) 560.

    Article  CAS  Google Scholar 

  60. Archard J F, J Appl Phys 24 (1953) 981.

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Józef Iwaszko.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwaszko, J. New Trends in Friction Stir Processing: Rapid Cooling—A Review. Trans Indian Inst Met 75, 1681–1693 (2022). https://doi.org/10.1007/s12666-022-02552-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02552-2

Keywords

Navigation