Skip to main content
Log in

Characterization of the Welding Zone of Automotive Sheets of Different Thickness (DP600 and DP800) Joined by Resistance Spot Welding

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Automotive industry in recent years, has gained great importance. In line with this, DP600 and DP800 dual-phase steels and the electrical resistance spot welding method were used in the study. During the experimental trials, different welding currents (6, 7, and 8 kA) were selected and all other welding parameters were kept constant. The effects of the welding parameters on microstructure, hardness, tensile-shear, and cross-tensile strength were analyzed. In the phase measurements, 27.06–29.97% martensite and 70.73–73.85% ferrite phases were found. When the hardness values in the HAZ regions were examined, it was seen that the highest hardness values were 356 ± 5 HV in the DP600 and 451 ± 5 HV in the DP800 with a current intensity of 6 kA. Consequently, it was determined that tensile-shear and cross-tensile strengths had increased in parallel with the increase in the welding current and the highest values were determined as 8 kA–15.91 kN in tensile shear and 8 kA–4.91 kN in cross-tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Darabi A C, Chamani H R, Kadkhodapour J, Anaraki A P, Alaie A, and Ayatollahi M R, Mech Mater 110 (2017) 68. DOI:https://doi.org/10.1016/j.mechmat.2017.04.009.

    Article  Google Scholar 

  2. Ashrafi H, Shamanian M, Emadi R, and Saeidi N, Trans Indian Inst Met 70 (2016) 1575. https://doi.org/10.1007/s12666-016-0955-z

    Article  CAS  Google Scholar 

  3. Rajarajan C, Sivaraj P, Seeman M, and Balasubramanian V, Mater Today Proc 22 (2020) 614. https://doi.org/10.1016/j.matpr.2019.09.009.

    Article  CAS  Google Scholar 

  4. Yaghoobi F, Jamaati R, and Aval H J, Mater Chem Phys 259 (2021) 124204. https://doi.org/10.1016/j.matchemphys.2020.124204.

    Article  CAS  Google Scholar 

  5. Yang H S, Seong B S, Han S H, and Choi S H, Met Mater Int 17 (2011) 403. https://doi.org/10.1007/s12540-011-0616-z.

    Article  CAS  Google Scholar 

  6. Chabok A, Van Der Aa E, Basu I, De Hosson J, and Pei Y, Sci Technol Weld Join 23 (2018) 649. https://doi.org/10.1080/13621718.2018.1452875.

    Article  CAS  Google Scholar 

  7. Davies R G, Metall Trans A 9 (1978) 671. https://doi.org/10.1007/bf02659924.

    Article  Google Scholar 

  8. Wan X, Wang Y, and Zhang P, J Mater Proc Technol 214 (2014) 2723. https://doi.org/10.1016/j.jmatprotec.2014.06.009.

    Article  CAS  Google Scholar 

  9. Elitas M, and Demir B, Eng Technol Appl Sci Res 8 (2018) 3116. https://doi.org/10.48084/etasr.2115.

    Article  Google Scholar 

  10. Hayat F, J Fac Eng Arch Gazi Univ 25 (2010) 701.

    Google Scholar 

  11. Rajarajan C, Sivaraj P, and Balasubramanian V, Mater Res Exp 7 (2020) 016555. https://doi.org/10.1088/2053-1591/ab654d

    Article  CAS  Google Scholar 

  12. Zhang X, Chen G, and Zhang Y, Mater Des 29 (2008) 279. https://doi.org/10.1016/j.matdes.2006.10.025.

    Article  CAS  Google Scholar 

  13. Hayat F, and Sevim ˙I, Int J Adv Manuf Technol 58 (2011) 1043. https://doi.org/10.1007/s00170-011-3428-x.

    Article  Google Scholar 

  14. MI K, ML K, Biro E, and Zhou Y, Mater Trans 49 (2008) 1629. https://doi.org/10.2320/matertrans.mra2008031.

    Article  Google Scholar 

  15. Podrzaj P, Polajnar I, Diaci J, and Kariz Z, Sci Technol Weld Join 11 (2006) 250. https://doi.org/10.1179/174329306x101391.

    Article  Google Scholar 

  16. Ramazani A, Mukherjee K, Abdurakhmanov A, Abbasi M, and Prahl U, Metals 5 (2015) 1704. https://doi.org/10.3390/met5031704.

    Article  Google Scholar 

  17. Eshraghi M, Tschopp M A, Zaeem M A, and Felicelli S D, Mater Des 56 (2014) 387. https://doi.org/10.1016/j.matdes.2013.11.026.

    Article  CAS  Google Scholar 

  18. Pandey C, Mahapatra MM, Kumar P, Daniel F, and Adhithan B, Arch Civ Mech Eng 19 (2019) 297. https://doi.org/10.1016/j.acme.2018.10.005

    Article  Google Scholar 

  19. Adams CM Weld J 37 (1958) 210.

    Google Scholar 

  20. Spitsen D K, and Flinn B, J Manuf Sci Eng 127 (2005) 718. https://doi.org/10.1115/imece2004-59759

    Article  Google Scholar 

  21. Li Y B, Li D L, David S A, Lim Y C, and Feng Z, Sci Technol Weld Join 21 (2016) 555. https://doi.org/10.1080/13621718.2016.1141493 2016

    Article  CAS  Google Scholar 

  22. Sameer M D, and Birru A K, Trans Indian Inst Met 72 (2018) 353. https://doi.org/10.1007/s12666-018-1487-5

    Article  CAS  Google Scholar 

  23. He H, Forouzan F, Volpp J, Robertson S M, and Vuorinen E, Materials 14 (2021) 456. DOI:https://doi.org/10.3390/ma14020456

    Article  CAS  Google Scholar 

  24. Ekmekci D, and Cora Ö N, Appl Phys A 126 (2020) 787. https://doi.org/10.1007/s00339-020-04095-z

    Article  CAS  Google Scholar 

  25. Hofmann H, Mattissen D, and Schaumann T W, Steel Res Int 80 (2009) 22.

    CAS  Google Scholar 

  26. Kishore K, Kumar P, and Mukhopadhyay G, Met Mater Int 2021 (2021) 1. https://doi.org/10.1007/s12540-020-00939-8.

    Article  CAS  Google Scholar 

  27. Marya M, and Gayden X, Development 1111 (2005) 11.

    Google Scholar 

  28. Hıdıroglu M, Kahraman U, and Kahraman N, Pamukkale Univ J Eng Sci 1000 (2021) 0.

    Google Scholar 

  29. Rajarajan C, Sivaraj P, and Balasubramanian V, Phys Met Metallogr 121 (2020) 1447. https://doi.org/10.1134/s0031918x20140136.

    Article  CAS  Google Scholar 

  30. Ignasiak A., Korzeniowski M, and Ambroziak A, Arch Metall Mater 57 (2012) 1081. https://doi.org/10.2478/v10172-012-0120-62011

    Article  CAS  Google Scholar 

  31. Sisodia R, Gáspár M, and Guellouh N, Int J Eng Manag Sci 4 (2019) 478. https://doi.org/10.21791/ijems.2019.1.59.

    Article  Google Scholar 

  32. Pouranvari M, Mousavizadeh S M, Marashi S P H, Goodarzi M, and Ghorbani M, Mater Des 32 (2011) 1390. https://doi.org/10.1016/j.matdes.2010.09.010.

    Article  CAS  Google Scholar 

  33. Sun X, Stephens E V, and Khaleel M A, Eng Failure Anal 15 (2008) 356. https://doi.org/10.1016/j.engfailanal.2007.01.018.

    Article  CAS  Google Scholar 

  34. Huin T, Dancette S, Fabrègue D, and Dupuy T, Metals 6 (2016) 111. https://doi.org/10.3390/met6050111

    Article  Google Scholar 

  35. Incekar E, Demir B, Dincel Ö, and Elitas M, El-Cezeri J Sci Eng 4 (2017) 112. https://doi.org/10.31202/ecjse.289641.

    Article  Google Scholar 

  36. Khan M I, Kuntz M L, and Zhou Y, Sci Technol Weld Join 13 (2008) 294. https://doi.org/10.1179/174329308x271733

    Article  CAS  Google Scholar 

  37. Khan M I, Kuntz M L, Biro E, and Zhou Y, Mater Trans 49 (2008) 1629. https://doi.org/10.2320/matertrans.mra2008031

    Article  CAS  Google Scholar 

  38. Baltazar Hernandez V H, Kuntz M L, Khan M I, and Zhou Y, Sci Technol Weld Join 13 (2008) 769. https://doi.org/10.1179/136217108x325470

    Article  CAS  Google Scholar 

  39. Baltazar Hernandez V H, Panda S K, Okita Y, and Zhou N Y, J Mater Sci 45 (2010) 1638. https://doi.org/10.1007/s10853-009-4141-0

    Article  CAS  Google Scholar 

  40. Nikoosohbat F, Kheirandish S, Goodarzi M, Pouranvari M, and Marashi S P H, Mater Sci Technol 26 (2010) 738. https://doi.org/10.1179/174328409x414995

    Article  CAS  Google Scholar 

  41. Xia M, Biro E, Tian Z, and Zhou Y N, ISIJ Int 48 (2008) 809. https://doi.org/10.2355/isijinternational.48.809

    Article  CAS  Google Scholar 

  42. Baltazar Hernandez V H, Nayak S S, and Zhou Y, Metall Mater Trans A 42 (2011) 3115. https://doi.org/10.1007/s11661-011-0739-3

    Article  CAS  Google Scholar 

  43. Pouranvari M, Marashi S P H, and Safanama D S, Mater Sci Eng A 528 (2011) 8344. https://doi.org/10.1016/j.msea.2011.08.016

    Article  CAS  Google Scholar 

  44. Vural M, and Akkus A, J Mater Process Technol 153–154 (2004) 1. https://doi.org/10.1016/j.jmatprotec.2004.04.063.

    Article  CAS  Google Scholar 

  45. Pouranvari M, Marashi S P H, and Mousavizadeh S M, Ironmak Steelmak 38 (2011) 471. https://doi.org/10.1179/1743281211y.0000000024.

    Article  CAS  Google Scholar 

  46. Pouranvari M, and Marashi S P H, Sci Technol Weld Join 18 (2013) 361 https://doi.org/10.1179/1362171813y.0000000120.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Karabük University Rectorate and the BAP Coordinator for supporting this study within the scope of the FDK-2020-2132 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Aydin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, K., Hidiroglu, M. & Kahraman, N. Characterization of the Welding Zone of Automotive Sheets of Different Thickness (DP600 and DP800) Joined by Resistance Spot Welding. Trans Indian Inst Met 75, 1279–1291 (2022). https://doi.org/10.1007/s12666-021-02482-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02482-5

Keywords

Navigation