Skip to main content

Advertisement

Log in

A Review on Processing of Electric Arc Furnace Dust (EAFD) by Pyro-Metallurgical Processes

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In recent years, the recovery of the valuable metals from iron-bearing solid waste from steel plant has been one of the most intensive research areas. Dumping of electric arc furnace dust is an environmental concern, and recovery of valuable metals like iron, zinc, lead from EAFD and safe disposal of residue has got enough attention. Evolution of improved and new processes has motivated industries to engage actively and targeting the new and efficient methods to recycle EAFD. The presence of valuable elements and increasing cost of waste incorporation are the motivational factors for the recycling of EAFD. In this article, the technologies that are in use to process EAFD have been discussed, and their advantages and disadvantages are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. World steel Association, 2019. World Steel Association, Steel Statistical Yearbook 2019; Available on Internet: http://www.worldsteel.org/statistics/statistics-archive/yearbook-archive.html.

  2. Morris J P, Riott J P and Illig E G, JOM 18 (1966) 803.

    Article  CAS  Google Scholar 

  3. Ellis A F and Glover J, J Iron Steel Inst 209 (1971) 593.

    CAS  Google Scholar 

  4. Guezennec A G, Huber J C, Patisson F, Sessiecq P H, Birat J P and Ablitzer D, ISIJ Int 44 (2014) 1328.

    Article  Google Scholar 

  5. Lis T, Nowacki K, Z_elichowska M and Kania H, Metalurgija 54 (2015) 283.

    Google Scholar 

  6. Pickles C A, Can Metall Quart 46 (2007) 125.

    Article  CAS  Google Scholar 

  7. Lin X, Peng Z, Yan J, Li Z, Hwang J Y, Zhang Y, Li G and Jiang T, J Clean Prod 149 (2017) 1079.

    Article  CAS  Google Scholar 

  8. Ma N Y, On in-process separation of zinc from EAF dust, Proceedings of EPD Congress (2011) p 947.

  9. Ma N Y, J Clean Prod 112 (2016) 4497.

    Article  CAS  Google Scholar 

  10. Nyirenda R L, Miner Eng 4 (1991) 1003.

    Article  Google Scholar 

  11. Stewart C, Recovery of Zinc from EAF dust in the Steel Industry, Intergalva conference, Liverpool, England (2015).

  12. Pickles C A, J Hazard Mater 150 (2008) 265.

    Article  CAS  Google Scholar 

  13. International Zinc Association, 2013. Zinc recycling; https://www.zinc.org/basics/zinc recycling.

  14. Environmental Protection Agency, 1991; https://www.epa.gov/rcra/resource-conservation-and-recovery-act-rcra-regulations#haz.

  15. Gorez J P, Gros B, Birat J P, Grisvard J, Huber C and Le Coq X, Rev Met Paris 100 (2003) 17.

    Article  CAS  Google Scholar 

  16. Nakayama T and Taniishi H, Eng Tech Rev 2 (2011) 25.

    Google Scholar 

  17. Buzin P J W K, Heck N C and Vilela A C F, J Mater Res Tech 6 (2017) 194.

    Article  CAS  Google Scholar 

  18. Kukurugya F, Vindt T and Havlik T, Hydrometallurgy 154 (2015) 20.

    Article  CAS  Google Scholar 

  19. Mager K, Meurer U and Wirling J, JOM 55 (2003) 20.

    Article  CAS  Google Scholar 

  20. Masson N and Briol P, A Brief Summary of Zinc Oxide Processing Methods Available for the Bongara Deposit, Belgium (2017).

  21. Harald R, Klaus D H, Rieger J and Reiter W, J Sustain Metall 5 (2019) 310.

    Article  Google Scholar 

  22. Morcali M H, Yucel O, Aydin A and Derin B, J Min Metall Sect B Metall 48 (2012) 173.

    Article  CAS  Google Scholar 

  23. Kanari N, Mishra D, Arteche A and Gaballah I, Waste Manag 2 (2002) 221.

    Google Scholar 

  24. Antrekowitsch J, Rosler G and Steinacker S, Chem Ing Tech 87 (2015) 1498.

    Article  CAS  Google Scholar 

  25. Wu Y, Jiang Z, Zhang X, Wang P and She X, Int J Min Metall Mater 20 (2013) 636.

    Article  CAS  Google Scholar 

  26. Kuwauchi Y and Barati M, ISIJ Int 53 (2013) 1097.

    Article  CAS  Google Scholar 

  27. Suetens T, Klaasen B, Van Acker K and Blanpain B, J Clean Prod 65 (2014) 152.

    Article  Google Scholar 

  28. Suetens T, Van Acker K, Blanpain B, Mishra B and Apelian D, JOM 66 (2014) 1119.

    Article  Google Scholar 

  29. Frieden R, Hansmann T, Roth J L, Solvi M and Engel R, Acta Metall Slovaka 7 (2001) 33.

    Google Scholar 

  30. Kurunov I F, Metallurgist 55 (2012) 634

    Article  CAS  Google Scholar 

  31. Bratina J E and Lenti K M, Iron Steel Technol 5 (2008) 118.

    CAS  Google Scholar 

  32. Verscheure K, Van Camp M C, Blanpain B, Wollants P, Hayes C and Jak E, Investigation of zinc fuming processes for the treatment of zinc containing residues, (ed) Nilmani M, Rankin W J, Melbourne, Australia (2005), p 237.

  33. Verscheure K, Van Camp M C, Blanpain B, Wollants P, Hayes C and Jak E, Metall Mater Trans B 38 (2007) 21.

    Article  CAS  Google Scholar 

  34. Verscheure K, Van Camp M C, Blanpain B, Wollants P, Hayes C and Jak E, Metall Mater Trans B 38 (2007) 13.

    Article  CAS  Google Scholar 

  35. Holtzer M, Kmita A and Roczniak A, Arch Foundry Eng 15 (2015) 126.

    Article  CAS  Google Scholar 

  36. Itaya H, Katayama H, Hamada T, Sato M, Ushijima T and Momokawa H, Kawasaki Steel Tech Rep 22 (1990) 3.

    Google Scholar 

  37. Hara Y, Ishiwata N, Itaya H and Matsumoto T, ISIJ Int 40 (2000) 231.

    Article  CAS  Google Scholar 

  38. Hughes S, Reuter M A and Baxter R, lead and zinc 2008 (2008) 147

    Google Scholar 

  39. Zhou T, China Nonferr Metall 31 (2002) 49.

    CAS  Google Scholar 

  40. Nakayama M, SEAISI Q 41 (2012)

    Google Scholar 

  41. Peng Z and Hwang J Y, Int Mater Rev 60 (2015) 30.

    Article  CAS  Google Scholar 

  42. Sun X, Hwang J Y and Huang X, JOM 60 (2008) 35.

    Article  CAS  Google Scholar 

  43. Zhou Y, Wu L, Wang J, Wang H and Dong Y, High Temp Mater Proc 34 (2015) 177.

    CAS  Google Scholar 

  44. Sebastian M T, Ubic R and Jantunen H, Int Mater Rev 60 (2015) 392.

    Article  CAS  Google Scholar 

  45. Muller J I R and Mayer W A, AIP conference proceedings 1653, 020074 (2015).

  46. Wang J, Zhang Y, Cui K, Gao J, Hussain S and Algarni T S, J Clean Prod 298 (2021) 126788.

    Article  CAS  Google Scholar 

  47. Piret N L, World Metall Erzmetall 65 (2012) 306.

    CAS  Google Scholar 

  48. Nakayama T and Taniishi H, Nippon Steel Eng Tech Rev 2 (2011) 25

    Google Scholar 

  49. Roth J L, Frieden R, Hansmann T, Monai J and Solvi M, Rev Met Paris 98 (2001) 987.

    Article  CAS  Google Scholar 

  50. Hoang J, Reuter M A, Matusewicz R, Hughes S and Piret N, Min Eng 22 (2009) 742.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is a part of the UAY project sponsored by MHRD-MoS-ASP, SAIL, Durgapur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thottempudi KiranKumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KiranKumar, T., Roy, G.G. A Review on Processing of Electric Arc Furnace Dust (EAFD) by Pyro-Metallurgical Processes. Trans Indian Inst Met 75, 1101–1112 (2022). https://doi.org/10.1007/s12666-021-02465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02465-6

Keywords

Navigation