Skip to main content
Log in

Sensitization and Desensitization (Healing) in Austenitic Stainless Steel: A Critical Review

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Austenitic stainless steel (ASS) or Rust free steel has become a predominant part in the finishing stages of superheater/reheater tubing of supercritical boilers, where intergranular corrosion (IGC) resistance turns out to be significant. Application of ASS is limited up to 600 °C due to IGC failure led by sensitization. The word sensitization states the failure in corrosion resistance due to chromium (Cr) depletion which further resulted from the chromium-carbide (Cr23C6) precipitation at grain boundaries. Sensitization takes place when an un-stabilized ASS is cooled gradually from the solution annealing zone (1100 °C) or re-heated (welding and post-weld heat treatment) between the temperature ranges from 400 to 800 °C. The reduction in the distance of the Cr depleted zone across the grain boundary is referred to as recovery from sensitization or healing or desensitization which may occur owing to several reasons. This review paper introduces a research work on sensitization recovery/healing in ASS and its (corrosion) measurement techniques. The analysis of sensitization and its healing is studied in terms of the degree of sensitization affected by several variables such as the effect of prior cold work, martensite, grain size, grain orientation, the effect of alloying elements, and temperature along with time. These parameters expressively change the activities of carbon (C) and Cr in the ASS and alter the carbide nucleation and growth. Further, various destructive and non-destructive sensitization measurement methods have been studied and appropriate practice is suggested which can quantify both Cr segregation and Cr depletion width precisely to identify desensitization. According to the present review, improvement of IGC resistance assisted by desensitization studied and needs for forthcoming investigations has been recognized to reinforce the capacity and abilities of the ASS in Super Critical Boiler technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R. Viswanathan, W. Bakker, J. Mater. Eng. Perform. 10 (2001) 81–95.

    Article  CAS  Google Scholar 

  2. R. Viswanathan, J. Sarver, J.M. Tanzosh, J. Mater. Eng. Perform. 15 (2006) 255–274.

    Article  CAS  Google Scholar 

  3. M. Mecheri, Y. Le Moullec, Energy 103 (2016) 758–771.

    Article  CAS  Google Scholar 

  4. J.N. Phillips, J.M. Wheeldon, Adv. Mater. Technol. Foss. Power Plants - Proc. from 6th Int. Conf. (2011) 53–64.

  5. B. Tramosljiks, P. Blecich, I. Bonefacic, V. Glazar, Sustain. 13 (2021) 1–20.

    Google Scholar 

  6. R.K. Desu, H. Nitin Krishnamurthy, A. Balu, A.K. Gupta, S.K. Singh, J. Mater. Res. Technol. 5 (2016) 13–20.

    Article  CAS  Google Scholar 

  7. A.A. Lebedev, V. V. Kosarchuk, Int. J. Plast. 16 (2000) 749–767.

    Article  CAS  Google Scholar 

  8. S. Sorrentino, Welding Technologies for Ultra-Supercritical Power Plant Materials, Elsevier Ltd, 2017.

  9. M.H. Lewis, B. Hattersley, Acta Metall. 13 (1965) 1159–1168.

    Article  CAS  Google Scholar 

  10. R. Viswanathan, W. Bakker, J. Mater. Eng. Perform. 10 (2001) 96–101.

    Article  CAS  Google Scholar 

  11. S. Mishra, A. Mishra, B.K. Show, J. Maity, Mater. Sci. Eng. A 688 (2017) 262–271.

    Article  CAS  Google Scholar 

  12. Y. Sawaragi, S. Hirano, The Development of a New 18–8 Austenitic Stainless Steel (0.LC-18Cr-9Ni-3Cu-Nb, N) with High Elevated Temperatures Strength for Fossil Power Boilers, Pergamon Press plc, 1992.

  13. P.J. Maziasz, Jom 41 (1989) 14–20.

    Article  CAS  Google Scholar 

  14. M.B. Anoop, K. Balaji Rao, N. Lakshmanan, Int. J. Press. Vessel. Pip. 85 (2008) 238–247.

    Article  CAS  Google Scholar 

  15. Y.J. Oh, Corrosion 56 (2000) 289–297.

    Article  CAS  Google Scholar 

  16. S. Ghosh, V.P.S. Rana, V. Kain, V. Mittal, S.K. Baveja, Mater. Des. 32 (2011) 3823–3831.

    Article  CAS  Google Scholar 

  17. G. Chai, M. Bostrom, M. Olaison, U. Forsberg, Procedia Eng. 55 (2013) 232–239.

    Article  CAS  Google Scholar 

  18. J.H. Kim, B.K. Kim, D.I. Kim, P.P. Choi, D. Raabe, K.W. Yi, Corros. Sci. 96 (2015) 52–66.

    Article  CAS  Google Scholar 

  19. A.H.T. Balk, J.W. Boon, C.F. Etienne, Br. Corros. J. 9 (1974) 4–9.

    Article  Google Scholar 

  20. J.E. Truman, 17, 71 (1977).

  21. P.R. Rhodes, Corrosion 25 (1969) 462–472.

    Article  CAS  Google Scholar 

  22. S. Lin, W. Bao, J. Gao, J. Wang, Appl. Mech. Mater. 229–231 (2012) 14–17.

    Article  CAS  Google Scholar 

  23. R.L. Fullman, Acta Metall. 30 (1982) 1407–1415.

    Article  CAS  Google Scholar 

  24. A. Almubarak, W. Abuhaimed, A. Almazrouee, Int. J. Electrochem. 2013 (2013) 1–7.

    Article  CAS  Google Scholar 

  25. R.L. Cowan, C.S. Tedmon, Adv. Corros. Sci. Technol. (1973) 293–400.

  26. S.M. Bruemmer, L.A. Charlot, Scr. Metall. 20 (1986) 1019–1024.

    Article  CAS  Google Scholar 

  27. C.S. Tedmon, D.A. Vermilyea, D.E. Broecker, Corrosion 27 (1971) 104–106.

    Article  CAS  Google Scholar 

  28. C.L. Briant, R.A. Mulford, E.L. Hall, Corrosion 38 (1982) 468–477.

    Article  CAS  Google Scholar 

  29. G.S. Was, R.M. Kruger, Acta Metall. 33 (1985) 841–854.

    Article  CAS  Google Scholar 

  30. T.M. Devine, Corros. Sci. 30 (1990) 135–151.

    Article  CAS  Google Scholar 

  31. H. Kokawa, M. Shimada, Y.S. Sato, Jom 52 (2000) 34–37.

    Article  CAS  Google Scholar 

  32. N. Srinivasan, V. Kain, N. Birbilis, K. V. Mani Krishna, S. Shekhawat, I. Samajdar, Corros. Sci. 100 (2015) 544–555.

  33. P.J. Gellings, M.A. de Jongh, Corros. Sci. 7 (1967).

  34. G. Cragnolino, D.D. Macdonald, Corrosion 38 (1982) 406–424.

    Article  CAS  Google Scholar 

  35. T.J. Marrow, L. Babout, A.P. Jivkov, P. Wood, D. Engelberg, N. Stevens, P.J. Withers, R.C. Newman, J. Nucl. Mater. 352 (2006) 62–74.

    Article  CAS  Google Scholar 

  36. R. Nishimura, Corros. Sci. 49 (2007) 81–91.

    Article  CAS  Google Scholar 

  37. T. Prosek, A. Le Gac, D. Thierry, S. Le Manchet, C. Lojewski, A. Fanica, E. Johansson, C. Canderyd, F. Dupoiron, T. Snauwaert, F. Maas, B. Droesbeke, Corrosion 70 (2014) 1052–1063.

    Article  Google Scholar 

  38. S. Teysseyre, G.S. Was, Corrosion 62 (2006) 1100–1116.

    Article  CAS  Google Scholar 

  39. S.M. Elsariti, Haftirman, Procedia Eng. 53 (2013) 650–654.

    Article  CAS  Google Scholar 

  40. P. Rajesh Kannan, V. Muthupandi, K. Devakumaran, C. Sridivya, E. Arthi, Mater. Chem. Phys. 207 (2018) 203–211.

  41. R. Wang, Z. Zheng, Q. Zhou, Y. Gao, Corros. Sci. 111 (2016) 728–741.

    Article  CAS  Google Scholar 

  42. S. Kolli, T. Ohligschlager, J. Komi, D. Porter, ISIJ Int. 59 (2019) 2090–2097.

    Article  CAS  Google Scholar 

  43. S. Lozano-Perez, J.M. Titchmarsh, Mater. High Temp. 20 (2003) 573–579.

    Article  CAS  Google Scholar 

  44. H. Sidhom, T. Amadou, H. Sahlaoui, C. Braham, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 38 (2007) 1269–1280.

  45. S. Kolli, T. Ohligschlager, D. Porter, ISIJ Int. 59 (2019) 1330–1336.

    Article  CAS  Google Scholar 

  46. S. Practices, 01 (2014) 1–21.

  47. E. Corro-, P. Anodic, P. Measurements, B. Alloys, 94 (2010) 1–9.

    Google Scholar 

  48. W.L. Clarke, G.M. Gordon, Corrosion 29 (1973) 1–12.

    Article  CAS  Google Scholar 

  49. C. Hahin, R.M. Stoss, B.H. Nelson, P.J. Reucroft, Corrosion 32 (1976) 229–238.

    Article  CAS  Google Scholar 

  50. C.L. Briant, A.M. Ritter, Scr. Metall. 13 (1979) 177–181.

    Article  CAS  Google Scholar 

  51. S. Pednekar, S. Smialowska, Corrosion 36 (1980) 565–577.

    Article  CAS  Google Scholar 

  52. S.K. Mannan, R.K. Dayal, M. Vijayalakshmi, N. Parvathavarthini, J. Nucl. Mater. 126 (1984) 1–8.

    Article  CAS  Google Scholar 

  53. A. Bose, P.K. De, Corrosion 43 (1987) 624–631.

    Article  CAS  Google Scholar 

  54. C. Garcia, F. Martin, P. De Tiedra, J.A. Heredero, M.L. Aparicio, Corrosion 56 (2000) 243–255.

    Article  CAS  Google Scholar 

  55. C. García, F. Martín, P. De Tiedra, J.A. Heredero, M.L. Aparicio, Corros. Sci. 43 (2001) 1519–1539.

    Article  Google Scholar 

  56. R. Singh, B. Ravikumar, A. Kumar, P.K. Dey, I. Chattoraj, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 34 A (2003) 2441–2447.

  57. R. Singh, J. Swaminathan, S.K. Das, B. Ravi Kumar, I. Chattoraj, Corrosion 61 (2005) 907–916.

  58. M. Dománková, P. Marek, R. Moravčík, Mater. Tehnol. 41 (2007) 131–134.

    Google Scholar 

  59. A. Randak, F.W. Trautes, Mater. Corros. 21 (1970) 97–109.

    Article  CAS  Google Scholar 

  60. D.A. Vermilyea, (1973) 442–450.

  61. C.L. Briant, A.M. Ritter, Metall. Trans. A 11 (1980) 2009–2017.

    Article  Google Scholar 

  62. C.L. Briant, A.M. Ritter, Metall. Trans. A, Phys. Metall. Mater. Sci. 12 A (1981) 910–913.

  63. R. Pascali, A. Benvenuti, D. Wenger, Corrosion 40 (1984) 21–32.

    Article  CAS  Google Scholar 

  64. B.W. Bennett, H.W. Pickering, Metall. Trans. A 18 (1991) 1117–1124.

    Article  Google Scholar 

  65. R. Beltran, E.A. Trillo, R.J. Romero, L.E. Murr, A.H. Advani, W.W. Fisher, Scr. Metall. 30 (1994) 1021–1025.

    Article  CAS  Google Scholar 

  66. E.A. Trillo, R. Beltran, J.G. Maldonado, R.J. Romero, L.E. Murr, W.W. Fisher, A.H. Advani, Mater. Charact. 35 (1995) 99–112.

    Article  CAS  Google Scholar 

  67. B. Reynalda, M. J.G., M. L.E., F. W.W., Acta Mater. 45 (1997) 4351–4360.

  68. E. Almanza, L.E. Murr, J. Mater. Sci. 35 (2000) 3181–3188.

    Article  CAS  Google Scholar 

  69. A. Di Schino, J.M. Kenny, J. Mater. Sci. Lett. 21 (2002) 1969–1971.

    Article  Google Scholar 

  70. R. Singh, S.G. Chowdhury, B. Ravi Kumar, S.K. Das, P.K. De, I. Chattoraj, Scr. Mater. 57 (2007) 185–188.

  71. M. Laleh, F. Kargar, Mater. Lett. 65 (2011) 1935–1937.

    Article  CAS  Google Scholar 

  72. R. V. Taiwade, R. Shukla, H. Vashishtha, A. V. Ingle, R.K. Dayal, ISIJ Int. 53 (2013) 2206–2212.

    Article  CAS  Google Scholar 

  73. S.X. Li, Y.N. He, S.R. Yu, P.Y. Zhang, Corros. Sci. 66 (2013) 211–216.

    Article  CAS  Google Scholar 

  74. L. Jinlong, L. Hongyun, L. Tongxiang, Mater. Chem. Phys. 163 (2015) 496–500.

    Article  CAS  Google Scholar 

  75. A.A. Tiamiyu, U. Eduok, J.A. Szpunar, A.G. Odeshi, Sci. Rep. 9 (2019) 1–18.

    Article  CAS  Google Scholar 

  76. S. Kolli, V. Javaheri, J. Komi, D. Porter, Metals (Basel). 9 (2019).

  77. R.A. Mulford, E.L. Hall, C.L. Briant, Corrosion 39 (1983) 132–143.

    Article  CAS  Google Scholar 

  78. T.A. Mozhi, W.A.T. Clark, K. Nishimoto, W.B. Johnson, D.D. Macdonald, Corrosion 41 (1985) 555–559.

    Article  CAS  Google Scholar 

  79. R.S. Dutta, P.K. De, H.S. Gadiyar, Corros. Sci. 34 (1993) 51–60.

    Article  CAS  Google Scholar 

  80. C.L. Briant, P.L. Andresen, Metall. Trans. A 19A (1988) 495–504.

    Article  CAS  Google Scholar 

  81. R. Beneke, R.F. Sandenbergh, Corros. Sci. 29 (1989) 543–555.

    Article  CAS  Google Scholar 

  82. R.F.A. Jargelius-Pettersson, ISIJ Int. 36 (1996) 818–824.

    Article  CAS  Google Scholar 

  83. N. Parvathavarthini, R.K. Dayal, J. Nucl. Mater. 305 (2002) 209–219.

    Article  CAS  Google Scholar 

  84. N. Parvathavarthini, S. Mulki, R.K. Dayal, I. Samajdar, K. V. Mani, B. Raj, Corros. Sci. 51 (2009) 2144–2150.

    Article  CAS  Google Scholar 

  85. A. Poonguzhali, M.G. Pujar, U. Kamachi Mudali, J. Mater. Eng. Perform. 22 (2013) 1170–1178.

  86. E.E. Denhard, Corrosion 16 (1960) 359t-370t.

    Article  CAS  Google Scholar 

  87. P. Chung, S. Szklarska-Smialowska, Corrosion 37 (1981) 39–50.

    Article  CAS  Google Scholar 

  88. S.M. Bruemmer, L.A. Charlot, B.W. Arey, Corrosion 44 (1988) 328–333.

    Article  CAS  Google Scholar 

  89. A. Tekin, J.W. Martin, B.A. Senior, J. Mater. Sci. 26 (1991) 2458–2466.

    Article  CAS  Google Scholar 

  90. L.E. Murr, A. Advani, S. Shankar, D.G. Atteridge, Mater. Charact. 39 (1997) 575–598.

    Article  Google Scholar 

  91. A.S. Lima, A.M. Nascimento, H.F.G. Abreu, P. De Lima-Neto, J. Mater. Sci. 40 (2005) 139–144.

    Article  CAS  Google Scholar 

  92. R.C. De Sousa, J.C. Cardoso Filho, A.A. Tanaka, A.C.S. De Oliveira, W.E.I. Ferreira, J. Mater. Sci. 41 (2006) 2381–2386.

  93. X. Yu, S. Chen, L. Wang, J. Serbian Chem. Soc. 74 (2009) 1293–1302.

    Article  CAS  Google Scholar 

  94. P. Atanda, A. Fatudimu, O. Oluwole, J. Miner. Mater. Charact. Eng. 9 (2010) 13–23.

    Google Scholar 

  95. R.K. Dayal, N. Parvathavarthini, B. Raj, Int. Mater. Rev. 50 (2005) 129–155.

    Article  CAS  Google Scholar 

  96. B.F. Dunnett, G.O.H. Whillock, Corrosion 59 (2003) 274–283.

    Article  CAS  Google Scholar 

  97. P. Muraleedharan, J.B. Gnanamoorthy, K. Prasad Rao, Corrosion 45 (1989) 142–149.

  98. W.L. Clarke, R.L. Cowan, W.L. Walker, Comparative Methods for Measuring Degree of Sensitization in Stainless Steel., 1978.

  99. M. V. Biezma, U. Martin, P. Linhardt, J. Ress, C. Rodríguez, D.M. Bastidas, Eng. Fail. Anal. 122 (2021) 105227.

  100. C. Garcia, F. Martín, Y. Blanco, M.P. de Tiedra, M.L. Aparicio, Corros. Sci. 51 (2009) 76–86.

    Article  CAS  Google Scholar 

  101. C. Garcia, M.P. de Tiedra, Y. Blanco, O. Martin, F. Martin, Corros. Sci. 50 (2008) 2390–2397.

    Article  CAS  Google Scholar 

  102. D.L. Reichert, G.E. Stoner, J. Electrochem. Soc. 137 (1990) 411–413.

    Article  CAS  Google Scholar 

  103. V. Kain, R.C. Prasad, P.K. De, High Temp. Mater. Process. 16 (1997) 183–199.

    Article  CAS  Google Scholar 

  104. J.S. Armijo, Corrosion 24 (1968) 24–30.

    Article  CAS  Google Scholar 

  105. A. Abou-Elazm, R. Abdel-Karim, I. Elmahallawi, R. Rashad, Corros. Sci. 51 (2009) 203–208.

    Article  CAS  Google Scholar 

  106. A.P. Majidi, M.A. Streicher, Corrosion 40 (1984) 584–593.

    Article  CAS  Google Scholar 

  107. J. Hong, D. Han, H. Tan, J. Li, Y. Jiang, Corros. Sci. 68 (2013) 249–255.

    Article  CAS  Google Scholar 

  108. Z. Fang, L. Zhang, Y.S. Wu, J.Q. Li, D.B. Sun, G. Jiang, Z.M. Cui, Corrosion 51 (1995) 124–130.

    Article  CAS  Google Scholar 

  109. H. Shaikh, N. Sivaibharasi, B. Sasi, T. Anita, R. Amirthalingam, B.P.C. Rao, T. Jayakumar, H.S. Khatak, B. Raj, Corros. Sci. 48 (2006) 1462–1482.

    Article  CAS  Google Scholar 

  110. S. Chen, H. Huang, C. Liu, Y. Pan, Corrosion 48 (1992) 594–598.

    Article  CAS  Google Scholar 

  111. J. Gao, Y. Jiang, B. Deng, Z. Ge, J. Li, Electrochim. Acta 55 (2010) 4837–4844.

    Article  CAS  Google Scholar 

  112. Y. Sun, L. Sun, N. Dai, Y. Liu, J. Wu, J. Li, Y. Jiang, Mater. Corros. 71 (2020) 900–908.

    Article  CAS  Google Scholar 

  113. H. Kanematsu, Y. Kunieda, T. Inoue, K. Murakami, R. Ichino, T. Oki, High Temp. Mater. Process. 17 (1998) 223–230.

    Article  CAS  Google Scholar 

  114. B.T. Lu, Z.K. Chen, J.L. Luo, B.M. Patchett, Z.H. Xu, Electrochim. Acta 50 (2005) 1391–1403.

    Article  CAS  Google Scholar 

  115. R. Von Wandruszka, S.W. Orchard, A. Greeff, Talanta 32 (1985) 307–311.

    Article  Google Scholar 

  116. K.R. Trethewey, D.A. Sargeant, D.J. Marsh, A.A. Tamimi, Corros. Sci. 35 (1993) 127–129.

    Article  CAS  Google Scholar 

  117. Y. Kelidari, M. Kashefi, M. Mirjalili, M. Seyedi, T.W. Krause, Corros. Sci. 173 (2020).

  118. A. Joseph, K. V Kasiviswanathan, B. Raj (1991)

  119. H. Shaikh, B.P.C. Rao, S. Gupta, R.P. George, S. Venugopal, B. Sasi, T. Jayakumar, H.S. Khatak, Br. Corros. J. 37 (2002) 129–140.

    Article  CAS  Google Scholar 

  120. U. Kamachi Mudali, C. Babu Rao, B. Raj, Corros. Sci. 48 (2006) 783–796.

  121. A. Bahrami, P. Taheri, Metals (Basel). 9 (2019) 969.

    Article  CAS  Google Scholar 

  122. J. Swaminathan, R. Singh, M. Kumar, B. Mahato, Eng. Fail. Anal. 18 (2011) 2211–2221.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research scholar would like to acknowledge the support and motivation from the Commissionerate of Technical Education, Gujarat State, and Gujarat Technical University, Gujarat State. The authors are also thankful to all those who contributed, supported, and motivated directly or indirectly for carrying out research.

Funding

Research scholars did not obtain any specific grant from any funding organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip K. Gajjar.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajjar, P.K., Khatri, B.C., Siddhpura, A.M. et al. Sensitization and Desensitization (Healing) in Austenitic Stainless Steel: A Critical Review. Trans Indian Inst Met 75, 1411–1427 (2022). https://doi.org/10.1007/s12666-021-02439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02439-8

Keywords

Navigation