Skip to main content
Log in

Thermal Resistance at the Polymer/Mold Interface in Injection Molding

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In injection molding, the thermomechanical condition of the solidifying part inside the cavity determines the morphology developed during cooling and thus the final properties of the component. This condition is significantly affected by the thermal contact resistance (TCR) at the polymer/mold interface. TCR is one of the most significant heat transfer characteristics that affect the quality of injection-molded components. TCR values significantly influence the simulated temperature distribution of the solidifying part inside the cavity. Using incorrect TCR values affect the accuracy of the simulated results leading to defects in the molded components. Further, the overall heat transfer during injection molding is influenced by the coolant characteristics and the thermophysical properties of the mold material. This paper gives an insight into the role of thermal transport phenomenon in the injection molding process, and particularly the importance of TCR during simulation of injection molding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Shrivastava A, Introduction to Plastics Engineering, 1st ed., Elsevier, Oxford, UK (2018), p 147–149.

    Google Scholar 

  2. Liu S J, Su P C, and Lin K Y, Measurement 42 (2009) 771.

    Article  Google Scholar 

  3. Khan M, Afaq S K, Khan N U, and Ahmad S, ISRN Mech Eng 2014 (2014) 968484.

  4. Park E M, and Kim S K, Trans Korean Soc Mech Eng B 43 (2019) 201.

    Article  Google Scholar 

  5. Crawford R J, Plastics Engineering, 3rd ed., Butterworth-Heinemann, London, UK (1998), p 278.

    Google Scholar 

  6. Baruffi F, Charalambis A, Calaon M, Elsborg R, and Tosello G, Procedia CIRP 75 (2018) 149.

    Article  Google Scholar 

  7. Kennedy P, and Zheng R, Flow Analysis of Injection Molds, 2nd ed., Hanser, Munich, Germany (2013).

  8. Osswald T A, and Hernández-ortiz J P, Polymer Processing: Modeling and Simulation, 1st ed., Hanser, Munich, Germany (2006).

  9. Le Goff R, Poutot G, Delaunay D, Fulchiron R, and Koscher E, Int J Heat Mass Transf 48 (2005) 5417.

    Article  Google Scholar 

  10. Fu H, Xu H, Liu Y, Yang Z, Kormakov S, Wu D, and Sun J, ES Mater Manuf 8 (2020) 3.

    CAS  Google Scholar 

  11. Bryce D M, Plastic Injection Molding Manufacturing Process Fundamentals, SME, Dearborn, MI, USA (1997), p 1.

  12. Liu Y, Heat Transfer Process between Polymer and Cavity Wall during Injection Molding, Doctoral Dissertation, Dept. Mech. Eng., Chemnitz University of Technology, Chemnitz, Germany (2014).

    Google Scholar 

  13. Kazmer D O, Injection Mold Design Engineering, 2nd ed., Hanser, Munich, Germany (2016), p 1-6.

    Google Scholar 

  14. Singh G, and Verma A, Mater Today Proc 4 (2017) 1423.

    Article  Google Scholar 

  15. Bonten C, Plastics Processing Technology, Hanser, Munich, Germany (2019).

  16. Marques S, De Souza A F, Miranda J, and Yadroitsau I, Polímeros 25(6) (2015) 564.

    Article  CAS  Google Scholar 

  17. Stricker M, and Steinbichler G, in Proceedings of the 29th International Conference of the Polymer Processing Society, AIP, Nuremberg, Germany (2014).

  18. Heinle M, and Drummer D, Int Polym Proc 30 (2015) 434.

    Article  CAS  Google Scholar 

  19. Nicolazo C, Sarda A, Vachot P, Mousseau P, and Deterre R, J Mater Process Technol 210(2) (2010) 233.

    Article  CAS  Google Scholar 

  20. Satin L, and Bílik J, Res Pap Fac Mater Sci Technol Slovak Univ Technol 24 (2016) 113.

    Google Scholar 

  21. Themelis N, Transport and Chemical Rate Phenomena, Gordon & Breach, New York, USA (1995), p 13.

    Google Scholar 

  22. Marianne G (Ed.), Brydson’s Plastics Materials, 8th ed., Elsevier, Oxford, UK (2017), p 72.

    Google Scholar 

  23. Dealy J M, and Wang J, Melt Rheology and Its Applications in the Plastics Industry, 2nd ed., Springer, New York, USA (2013), p 24.

    Book  Google Scholar 

  24. Kamal M R, and Nyun H, Trans Soc Rheol 17(2) (1973) 271.

    Article  CAS  Google Scholar 

  25. AZO Materials (Sponsered by Dynisco). https://www.azom.com/article.aspx?ArticleID=19175/, 2020 (Jan. 14, 2021).

  26. Aho J, Rheological Characterization of Polymer Melts in Shear and Extension: Measurement Reliability and Data for Practical Processing, D.Sc. Thesis, Dept. Mater. Sci., Tampere University of Technology, Tampere, Finland (2011).

  27. Friesenbichler W, Duretek I, Rajganesh J, and Kumar S R, Polimery 56 (2011) 58.

    Article  Google Scholar 

  28. Volpe V, and Pantani R, J Appl Polym Sci 135 (2018) 45277.

    Article  Google Scholar 

  29. Raha S, Sharma H, Senthilmurugan M, Bandyopadhyay S, and Mukhopadhyay P, Polym Eng Sci 60 (2020) 517.

    Article  CAS  Google Scholar 

  30. Guo Z G, Li X, Li J, Zhang B, and Cheng B W, Chin J Polym Sci 32 (2014) 923.

    Article  CAS  Google Scholar 

  31. Özdemir A, Uluer O, and Güldaş A, Polym Test 23 (2004) 957.

    Article  Google Scholar 

  32. Shoemaker J, Moldflow Design Guide: A Resource for Plastics Engineers, 1st ed., Hanser, Munich, Germany (2006), p 18.

    Book  Google Scholar 

  33. Candal M V, and Morales R A, Polym Plast Technol Eng 47 (2008) 376.

    Article  CAS  Google Scholar 

  34. Chen S C, Hsu K F, and Huang J S, Int Commun Heat Mass Transf 21 (1994) 499.

    Article  CAS  Google Scholar 

  35. Schmidt L R, Polym Eng Sci 14 (1974) 797.

    Article  CAS  Google Scholar 

  36. Jong W R, Hwang S S, Tsai M C, Wu C C, Kao C H, and Huang Y M, J Polym Eng 37 (2017) 505.

    Article  Google Scholar 

  37. Guevara-Morales A, and Figueroa-López U, J Mater Sci 49 (2014) 4399.

    Article  CAS  Google Scholar 

  38. Healy J, Edward G H, and Knott R B, Phys B Condens Matter 385–386 (2006) 620.

    Article  Google Scholar 

  39. Whitehand G. http://www.qenos.com/internet/home.nsf/(LUImages)/nwWP Orientation in Injection Moulding/$File/WP Orientation in injection moulding.pdf, 2015 (Oct. 17, 2020).

  40. Branciforti M C, Almeida A D M, and Bretas R E S, in 22nd Annual Meeting of the Polymer Processing Society, Yamagata, Japan (2006).

  41. Mensler H, Zhang S, and Win T, Polym Eng Sci 59 (2019) 1132.

    Article  CAS  Google Scholar 

  42. Fathi S, and Behravesh A H, Polym Eng Sci 48 (2008) 598.

    Article  CAS  Google Scholar 

  43. Chen X, and Gao F, Adv Polym Technol 25 (2006) 13.

    Article  Google Scholar 

  44. Mark J E (Ed.), Physical Properties of Polymers Handbook, 2nd ed., Springer, New York, USA (2007), p 145-154.

    Google Scholar 

  45. Golmanavich J, and Calhoun A R (Eds.), Plastics Technicians Toolbox, SPE, USA (2002), p 21–33.

    Google Scholar 

  46. Katti S S, and Schultz M, Polym Eng Sci 22 (1982) 1001.

    Article  CAS  Google Scholar 

  47. Choi D, and White J L, Polym Eng Sci 42 (2002) 1642.

    Article  CAS  Google Scholar 

  48. Pantani R, Speranza V, and Titomanlio G, Eur Polym J 97 (2017) 220.

    Article  CAS  Google Scholar 

  49. Pantani R, Coccorullo I, Speranza V, and Titomanlio G, Prog Polym Sci 30 (2005) 1185.

    Article  CAS  Google Scholar 

  50. Speranza V, Liparoti S, Pantani R, and Titomanlio G, in 32nd International Conference of the Polymer Processing Society, AIP, Lyon, France (2017).

    Google Scholar 

  51. Pantani R, Speranza V, and Titomanlio G, Int Polym Proc 33(3) (2018) 355.

    Article  CAS  Google Scholar 

  52. Liparoti S, Speranza V, Sorrentino A, and Titomanlio G, Polymers (Basel) 9 (2017) 585.

    Article  Google Scholar 

  53. Liparoti S, Titomanlio G, and Sorrentino A, AIChE J 62 (2016) 2699.

    Article  CAS  Google Scholar 

  54. Viana J C, Alves N M, and Mano J F, Polym Eng Sci 44 (2004) 2174.

    Article  CAS  Google Scholar 

  55. Liparoti S, Sorrentino A, Guzman G, Cakmak M, and Titomanlio G, RSC Adv 5 (2015) 36434.

    Article  CAS  Google Scholar 

  56. Fischer C, and Drummer D, Int J Polym Sci 2016 (2016) 5450708.

    Article  Google Scholar 

  57. Yu C, Xie Q, Bao Y, Shan G, and Pan P, Crystals 7 (2017) 147.

    Article  Google Scholar 

  58. Naranjo A, Michaeli W E H, and Lingk O, J Plast Technol 4 (2008) 1.

    Google Scholar 

  59. Kamal M R, and Lafleur P G, Polym Eng Sci 24 (1984) 692.

    Article  CAS  Google Scholar 

  60. Jungmeier A, Ehrenstein G W, and Drummer D, Plast Rubber Compos 39 (2010) 308.

    Article  CAS  Google Scholar 

  61. Spoerer Y, Androsch R, Jehnichen D, and Kuehnert I, Polymers (Basel) 12 (2020) 894.

    Article  CAS  Google Scholar 

  62. Delaunay D, Le Bot P, Fulchiron R, Luye J F, and Regnier G, Polym Eng Sci 40 (2000) 1682.

    Article  CAS  Google Scholar 

  63. Madhusudana C V, Thermal Contact Conductance, 2nd ed., Springer, Cham, Switzerland (2014), p 1–8.

    Google Scholar 

  64. Massé H, Arquis É, Delaunay D, Quilliet S, and Le Bot P H, Int J Heat Mass Transf 47 (2004) 2015.

    Article  Google Scholar 

  65. Babenko M, Sweeney J, Petkov P, Lacan F, Bigot S, and Whiteside B, Appl Therm Eng 130 (2018) 865.

    Article  CAS  Google Scholar 

  66. Bahrami M, Culham J R, Yananovich M M, and Schneider G E, Appl Mech Rev 59 (2006) 1.

    Article  Google Scholar 

  67. Clausing A M, and Chao B T, J Heat Transf 87 (1965) 243.

    Article  CAS  Google Scholar 

  68. Sridhar L, Investigation of Thermal Contact Resistance at a Plastic Metal Interface in Injection Molding, Doctoral Dissertation, Dept. Mech. Eng., New Jersey Institute of Technology, Newark, NJ, USA (1999).

  69. Sridhar L, Sedlak B M, and Narh K A, J Manuf Sci Eng 122(4) (2000) 698.

    Article  Google Scholar 

  70. Bendada A, Derdouri A, Lamontagne M, and Simard Y, Appl Therm Eng 24 (2004) 2029.

    Article  CAS  Google Scholar 

  71. Lin Z C, and Chou M H, J Manuf Syst 21 (2002) 167.

    Article  Google Scholar 

  72. Yu C J, and Sunderland J E, Polym Eng Sci 32 (1992) 191.

    Article  CAS  Google Scholar 

  73. Malloy R A, Plastic Part Design for Injection Molding: An Introduction, 2nd ed., Hanser, Munich, Germany (2010), p 86.

    Book  Google Scholar 

  74. Yu C J, Sunderland J E, and Poli C, Polym Eng Sci 30 (1990) 1599.

    Article  CAS  Google Scholar 

  75. Sridhar L, and Narh K A, Simulation 73 (1999) 144.

    Article  Google Scholar 

  76. Naranjo A, Campuzano J F, López I, in ANTEC, SPE, Anaheim,California, USA (2017).

  77. Fuller J J, and Marotta E E, J Thermophys Heat Transf 15 (2001) 228.

    Article  CAS  Google Scholar 

  78. Dawson A, Rides M, Allen C R G, and Urquhart J M, Polym Test 27 (2008) 555.

    Article  CAS  Google Scholar 

  79. Urquhart J M, and Brown C S, Report on “The Effect of Uncertainty in Heat Transfer Data on The Simulation of Polymer Processing,” National Physical Laboratory, Teddington, Middlesex, UK (2004).

  80. Parihar S K, and Wright N T, Int Commun Heat Mass Transf 24 (1997) 1083.

    Article  CAS  Google Scholar 

  81. Mohr J W, Seyed-Yagoobi J, and Price D C, J Heat Transf 119 (1997) 363.

    Article  CAS  Google Scholar 

  82. Hall J A, Ceckler W H, and Thompson E V, J Appl Polym Sci 33 (1987) 2029.

    Article  CAS  Google Scholar 

  83. Zhao P, Zhang J, Dong Z, Huang J, Zhou H, Fu J, and Turng L-S, Adv Polym Technol 2020 (2020) 7023616.

    Google Scholar 

  84. Varela A E, Kamal M R, and Patterson W I, Adv Polym Technol 15 (1996) 17.

    Article  CAS  Google Scholar 

  85. Farouq Y, Nicolazo C, Sarda A, and Deterre R, Measurement 38 (2005) 1.

    Article  Google Scholar 

  86. Zhu L Y, Wu W Q, Jiang L, and Jiang B Y, Int Polym Proc 34 (2019) 2.

    Article  CAS  Google Scholar 

  87. Liu Y, and Gehde M, Int J Adv Manuf Techno. 84 (2015) 1325.

    Google Scholar 

  88. Ageyeva T, Horváth S, and Kovács J G, Sensors (Switzerland) 19 (2019) 3551.

    Article  CAS  Google Scholar 

  89. Obendrauf W, Langecker G R, and Friesenbichler W, Int Polym Proc 13 (1998) 71.

    Article  CAS  Google Scholar 

  90. Bendada A, Cole K, Lamontagne M, and Simard Y, J Opt A Pure Appl Opt 5 (2003) 464.

    Article  CAS  Google Scholar 

  91. Johnston S P, Mendible G A, Gao R X, and Kazmer D O, Int Polym Proc 30 (2015) 460.

    Article  CAS  Google Scholar 

  92. Kazmer D O, Johnston S P, Gao R X, and Fan Z, Int Polym Proc 26 (2011) 63.

    Article  CAS  Google Scholar 

  93. Somé S C, Delaunay D, Faraj J, Bailleul J L, Boyard N, and Quilliet S, Appl Therm Eng 84 (2015) 150.

    Article  Google Scholar 

  94. Le Bot P, Quilliet S, Delaunay D, Jarny Y, in 1st ESAFORM Conference in Material Forming, CEMEF, Sophia-Antipolis, France (1998).

  95. Agarwala S, and Prabhu K N, Thermochimica Acta 685 (2020) 178540.

  96. Gibbins J, Thermal Contact Resistances of Polymer Interface, Master Thesis, Dept. Mech. Eng., Conrad Grebel University, Ontario, Canada (2006).

  97. Zhu L, Min L, Li X, Zhai Z, Drummer D, and Jiang B, J Polym Eng 39 (2019) 493.

    Article  Google Scholar 

  98. Hong S, Kang J, and Yoon K, Int J Heat Mass Transf 87 (2015) 222.

    Article  Google Scholar 

  99. Nguyen-chung T, Jüttner G, Löser C, Pham T, and Gehde M, Polym Eng Sci 50 (2010) 165.

    Article  CAS  Google Scholar 

  100. Weng C, Li J, Lai J, Liu J, and Wang H, polymers 12 (2020) 2409.

    Article  CAS  Google Scholar 

  101. Rhee B O, Hieber C A, and Wang K K, in ANTEC, SPE, San Franciso, USA (1994) 496.

  102. Otsuka M, Oyabe A, and Ito H, Polym Eng Sci 51 (2011) 1383.

    Article  CAS  Google Scholar 

  103. Young W B, Appl Math Model 31 (2007) 1798.

    Article  Google Scholar 

  104. Shiraishi Y, Norikane H, Narazaki N, and Kikutani T, Int Polym Proc 17 (2002) 166.

    Article  CAS  Google Scholar 

  105. Liu Y, and Gehde M, Appl Therm Eng 80 (2015) 238.

    Article  CAS  Google Scholar 

  106. Ong N S, Zhang H L, and Lam Y C, Int J Adv Manuf Technol 45 (2009) 481.

    Article  Google Scholar 

  107. Somé S C, Delaunay D, and Gaudefroy V, Appl Therm Eng 61 (2013) 531.

    Article  Google Scholar 

  108. Bai Y, Yin B, Fu X R, and Yang M G, J App Polym Sci 102 (2006) 2249.

    Article  CAS  Google Scholar 

  109. Lee K Y, Kim K M, and Park K, J Korean Soc Manuf Technol Eng 21 (2012) 1008.

    Google Scholar 

  110. Wang G, Zhao G, and Guan Y, J App Polym Sci 128 (2012) 1339.

    Google Scholar 

  111. Yu L, Lee L J, and Koelling K W, Polym Eng Sci 44 (2004) 1866.

    Article  CAS  Google Scholar 

  112. Gruber P A, and Miranda D A, polymeros 30 (2020) e2020005.

  113. Nakao M, Tsuchiya K, Sadamitsu T, Ichikohara Y, Ohba T, and Ooi T, Int J Adv Manuf Technol 38 (2008) 426.

    Article  Google Scholar 

  114. Marotta E E, and Fletcher L S, J Thermophys Heat Transf 10 (1996) 334.

    Article  CAS  Google Scholar 

  115. Prabhu K N, Mounesh H, Suresh K M, and Ashish A A, Int J Cast Met Res 15 (2003) 565.

    Article  CAS  Google Scholar 

  116. Wang H, Cao B, Jen C K, Nguyen K T, and Viens M, Polym Eng Sci 37 (1997) 363.

    Article  CAS  Google Scholar 

  117. Wang Q, Zhen M, Wu Z, and Cai Y, in 32nd International Conference of the Polymer Processing Society, AIP, Lyon, France (2017).

    Google Scholar 

  118. Lucchetta G, and Fiorotto M, J Mech Eng 59 (2013) 683.

    Article  Google Scholar 

  119. Griffiths C A, Dimov S S, Brousseau E B, and Hoyle R T, J Mater Proc Technol 189 (2007) 418.

    Article  CAS  Google Scholar 

  120. Surace R, Sorgato M, Bellantone V, Modica F, Lucchetta G, and Fassi I, J Manuf Process 43 (2019) 105.

    Article  Google Scholar 

  121. Chen S C, Chang Y, Chang Y P, Chen Y C, and Tseng C Y, Int Commun Heat Mass Transf 36 (2009) 1030.

    Article  CAS  Google Scholar 

  122. Alcoa. https://silo.tips/download/qc-10-high-strength-aluminum-injection-mold#modals/, 2016 (Aug. 28, 2021)

  123. Bank D, Klafhen D, and Smierciak R. https://plasticsbusinessmag.com/articles/2012/why-plastic-flows-better-in-aluminum-injection-molds/, 2012 (Oct. 17, 2020).

  124. Chang Y, Liu C S, Huang S T, Huang C T, Chen M C, and Yang W H, in ANTEC, SPE, Chicago, IL, USA (2009).

  125. Prasetiyo A B, and Fauzun F, MATEC Web Conf 197 (2018) 08019.

    Article  Google Scholar 

  126. Meckley J, Tech Interface Int J 8 (2007) 1.

    Google Scholar 

  127. Chinchkhede P, and Ashtankar K M, Int J Eng Technol 3 (2016) 846.

    Google Scholar 

  128. Karthikeyan S, Jayabal S, Kalyanasundaram S, and Boopathi C, Int J Res Appl Sci Eng Technol 3 (2015) 447.

  129. Ali M A, Salmah S, Abdullah Z, Jun L P, Muhamad M R, Izamshah R, Hadzley M, Abdullah A, and Marjom Z, Appl Mech Mater 761 (2015) 42.

    Article  Google Scholar 

  130. Zink B, Szabó F, Hatos I, Suplicz A, Kovács N K, Hargitai H, Tábi T, and Kovács J G, Polymers (Basel) 9 (2017) 77.

    Article  Google Scholar 

  131. Fernandes C, Pontes A J, Viana J C, Gasper-Cunha V, Adv Polym Technol 37 (2016) 429.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Narayan Prabhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nathan, D.K., Prabhu, K.N. Thermal Resistance at the Polymer/Mold Interface in Injection Molding. Trans Indian Inst Met 75, 307–326 (2022). https://doi.org/10.1007/s12666-021-02420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02420-5

Keywords

Navigation