Skip to main content
Log in

The Properties Evolution of Medical Mg–Zn Alloys Prepared by Semi-solid Powder Moulding

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, medical Mg–xZn (x = 3, 6, 9 wt%) alloys were successfully prepared by a novel technique, semi-solid powder moulding. The effects of Zn content and temperature (580, 590, 600 ℃) on the relative density, microstructure, microhardness and degradation behaviour were studied. The microstructure evolution and refinement mechanism during the forming process were analysed. The results show as the temperature and Zn content increase, the relative density and microhardness gradually increase. When the temperature is 600 ℃, the relative density of Mg–3Zn, Mg–6Zn and Mg–9Zn is 92.3%, 97.2% and 97.8%, respectively. The corresponding microhardness is 101.2 HV, 105.6 HV and 106.3 HV, respectively. The prepared Mg–Zn alloys have fine microstructure with equiaxed grains, which consists of α-Mg matrix and second phase of MgZn2 with a few of Mg4Zn7 and Mg2Zn11. As Zn content increases, the amount of second phase increases, and the microstructure becomes uneven at the Zn content of 9 wt%. Pseudo-transgranular liquation cracking is one of the grain refinement mechanisms. As the Zn content increases, the corrosion rate decreases firstly and then increases. Mg–6Zn prepared at 600 ℃ has the lowest corrosion rate of 4.8 mm/year after 9 days of dynamic immersion. Both the porosity and second phase influence the corrosion rate, but the porosity is the main factor controlling the degradation. Mg–6Zn alloy is the best composition based on the properties and microstructures. The main components of corrosion products are Mg (OH)2, hydroxyapatite and a small amount of MgO and CaCO3, which shows a good biocompatibility. Semi-solid powder moulding shows a fantastic potential to prepare medical Mg alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth C J, and Windhagen H, Biomaterials 26 (2005) 3557

    Article  CAS  Google Scholar 

  2. Duygulu O, Alper Kaya R, Oktay G, and Arslan Kaya A, Sci. Forum 546 (2007) 421

    Article  Google Scholar 

  3. Wang J, Liu L, Wu Y, Maitz M F, Wang Z, Koo Y, Zhao A, Sankar J, Kong D, Huang N, and Yun Y, Acta Biomater. 50 (2017) 546

    Article  CAS  Google Scholar 

  4. Luo X, Ebel T, Pyczak F, Limberg W, and Lin Y, Mater. Lett. 193 (2017) 295

    Article  CAS  Google Scholar 

  5. Pereda M D, Alonso C, Burgos-Asperilla L, Del Valle J A, Ruano O A, Perez P, and Fernández Lorenzo De Mele M A, Acta Biomater. 6 (2010) 1772

  6. Zheng Y F, Gu X N, Xi Y L, and Chai D L, Acta Biomater. 6 (2010) 1783

    Article  CAS  Google Scholar 

  7. Yu J, Wang J, Li Q, Shang J, Cao J, and Sun X, Rare Met. Mater. Eng. 45 (2016) 2757

    Article  CAS  Google Scholar 

  8. Wolff M, Mesterknecht T, Bals A, Ebel T, and Willumeit-Römer R, Miner. Met. Mater. Ser. 2019 (2019) 43

    Google Scholar 

  9. Luo X, Fang C, Fan Z, Huang B, and Yang J, Mater. Res. Express 6 (2019) 076528

  10. Wu Y, Gap-Yong Kim M P, Russell A, Anderson I, Shrotriya P, and Wang X, Mech. Eng. (2011)

  11. Czerwinski F, Int. J. Cast Met. Res. 33 (2020) 1571

    Article  Google Scholar 

  12. Czerwinski F, Mater. Sci. Technol. (UK) 35 (2019) 999

    Article  CAS  Google Scholar 

  13. Czerwinski F, Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci. 49 (2018) 3220

  14. Luo X, Wu M, Fang C, and Huang B, JOM 71 (2019) 4349

    Article  Google Scholar 

  15. Verissimo N C, Freitas E S, Cheung N, GarciaA, and Osório W R, J. Alloys Compd. 723 (2017) 649

    Article  CAS  Google Scholar 

  16. Luo X, Fang C, Yao F, Zhao H, and Yan S, Trans. Indian Inst. Met. 72 (2019) 1791

    Article  Google Scholar 

  17. Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, Tao H, Zhang Y, He Y, Jiang Y, and Bian Y, Acta Biomater. 6 (2010) 626

    Article  CAS  Google Scholar 

  18. Li X. Study on Diffusion Propertiesof Ca, Zn, Al in Mg, Ph D Thesis Chongqing University Master Thesis (in Chinese) (2015)

  19. Liu Y, Luo X, and Li Z, J. Mater. Process. Technol. 214 (2014) 165

    Article  CAS  Google Scholar 

  20. Luo X, Liu Y, Mo Z, and Gu C, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. (2015)

  21. Luo X, Liu Y, Gu C, and Li Z, Powder Technol. 261 (2014) 161

    Article  CAS  Google Scholar 

  22. Karagadde S, Lee P D, Cai B, Fife J L, Azeem M A, Kareh K M, Puncreobutr C, Tsivoulas D, Connolley T, and Atwood R C, Nat. Commun. 6 (2015) 8300

    Article  CAS  Google Scholar 

  23. Gui Z Z, Researches on Design, Preparation and Properties of Biomedical Degradable Mg-RE Alloys, Ph D Thesis, South China University of Technology (in Chinese) (2018)

  24. Shi Z, Liu M, and Atrens A, Corros. Sci. 2 (2010) 579

    Article  Google Scholar 

  25. Eshwara P S N, Diana K, Berit Z-P, Domonkos T, Bjorn W, Frank F, Thomas E, and Regine W-R, J. Magnes. Alloy, 9 (2021) 686

    Article  Google Scholar 

  26. Wu L, He Y H, Jiang Y, Zeng Y, Xiao Y F, Nan B, Trans. Nonferrous Met. Soc. China, 24 (2014) 3509

    Article  CAS  Google Scholar 

  27. Mohamed A, El-Aziz A M, and Breitinger H G, J. Magnes. Alloy. 7 (2019) 249

    Article  CAS  Google Scholar 

  28. Cui Z Q, Li W J, Cheng L X, Gong D Q, Cheng W L, and Wang W X. Mater Charact. 151 (2019) 620

    Article  CAS  Google Scholar 

  29. Du W, Liu K, Ma K, Wang Z, and Li S, J. Magnes. Alloy. 6 (2018) 1

    Article  CAS  Google Scholar 

  30. Luo X, Liu Y Z, and Wang B, Acta Metall. Sin. (English Lett). 28 (2015) 1305

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of National Natural Science Foundation of China (No. 51704255) and Sichuan Science and Technology Program (No. 2020YFH0151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Yang, S., Li, M. et al. The Properties Evolution of Medical Mg–Zn Alloys Prepared by Semi-solid Powder Moulding. Trans Indian Inst Met 74, 3063–3073 (2021). https://doi.org/10.1007/s12666-021-02373-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02373-9

Keywords

Navigation