Skip to main content

Microstructure Evolution and Mechanical Properties of Medical Material Mg–3Zn Alloy Prepared by Semi-solid Powder Injection Moulding

  • Conference paper
  • First Online:
TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 4881 Accesses

Abstract

Medical Mg-based alloys are extensively applied because of its degradability, low elastic modulus, etc. In this study, Mg–3Zn alloy was prepared by semi-solid powder injection moulding , a novel method combining metal injection moulding and thixomoulding in one step. Firstly, pure Mg powders with 3 wt% of pure Zn powders (the mean diameter is 50 μm) were mixed, and then the mixture were injected at 540, 560, 580, 600, and 620 °C, respectively with the loading force of 5 t. The effect of injection temperature on the microstructure , and its corresponding mechanical properties were investigated. The densification process and combination mechanism were analyzed as well. The results show that as the temperature increases, relative density, the compressive strength and microhardness increase first and then decrease when the temperature reaches to 620 °C. The highest relative density, microhardness and compressive strength is 97.4%, 125 HV, 315.4 MPa, respectively at the injection temperature of 600 °C. The microstructure is mainly composed of α-Mg and intermetallic phases (MgZn2, Mg4Zn7 and Mg51Zn20), the grain morphology is equiaxed grains with size of about ~30 μm. When injected at low temperature, the main combination mechanism of powders is hot rolling densification. When injected at high temperature , flowing and filling of liquid is the main combination mechanism . Broken-up of particles and deformation including viscoplastic deformation contributes to the densification. More Mg was dissolved into Zn as the temperature increases, and the liquid fraction is mainly influenced by the dissolved Mg content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo X, Ebel T, Pyczak F et al (2017) Mater Lett 193:295–298

    Article  CAS  Google Scholar 

  2. Song YW, Shan DY, Han EH (2008) Mater Lett 62(17):3276–3279

    Article  CAS  Google Scholar 

  3. Yi S, Park ES, Ok JB et al (2002) Micron 33(6):565–570

    Article  CAS  Google Scholar 

  4. Peng QM, Huang YD, Zhou L et al (2010) Biomaterials 31:398–403

    Article  CAS  Google Scholar 

  5. Wolff M, Hort N (2008) Mould Int 2:63

    Google Scholar 

  6. Yu JY, Wang JZ, Li Q et al (2016) Rare Metal Mater Eng 45(11):2757–2762

    Article  Google Scholar 

  7. Mohedanoa M, Blawert C, Yasakau KA et al (2017) Mater Charact 128:85–99

    Article  Google Scholar 

  8. Ghosh D, Kang K, Bach C et al (1992) Properties and microstructure of Thixomolded and heat treated AZ61A magnesium alloy. In: Avedesian MM, Larouehe LJ, Masounave J (eds) Advanced in production and fabrication of light metals and metal matrix composites. The metallurgical society of the CIM, Montreal, Canada, pp 399–411

    Google Scholar 

  9. Carnahan RD, Hathaway R, Kilbert R et al (1993) Thixomolded AZ91D magnesium: mechanical and microstructural property dependency on process parameter variations. In: Proceedings of the international symposium on light metals processing and applications, Quebec City, PQ, pp 325–335

    Google Scholar 

  10. Czerwinski F, Pinet PJ, Overbeeke J (2001) The influence of primary solid content on the tensile properties of a Thixomolded AZ91D magnesium alloy. In: Magnesium technology 2001 of TMS (The minerals, metals & materials society), pp 99–103

    Chapter  Google Scholar 

  11. Czerwinski F, Zielinska A, Pinet PJ et al (2001) Acta Mater 49:1225–1235

    Article  CAS  Google Scholar 

  12. Czerwinski F (2003) Scripta Mater 48:327–331

    Article  CAS  Google Scholar 

  13. Scharrer M, Lohmüller A, Hilbinger RM et al (2006) Advances in magnesium injection molding (Thixomolding®). In: Proceedings of the 7th international conference magnesium alloys and their applications, Dresden

    Google Scholar 

  14. Frank H, Hort N, Dieringa H, Kainer K-U (2008) Solid State Phenom 141–143:43–48

    Google Scholar 

  15. Zhang YF, Liu YB, Zhang QQ et al (2007) Mater Sci Eng A 444:251–256

    Article  Google Scholar 

  16. Patel HA, Chen DL, Bhole SD, Sadayappan K (2010) J Alloy Compd 496:140–148

    Article  CAS  Google Scholar 

  17. Berman TD (2014) Microstructure evolution and tensile deformation in Mg alloy AZ61 through Thixomolding and Thermomechanical processing. University of Michigan

    Google Scholar 

  18. Wu YF, Kim GY, Anderson IE, Lograsso TA (2010) Acta Mater 58:4398–4405

    Article  CAS  Google Scholar 

  19. Liu YZ, Luo X, Li ZL (2014) J Mater Process Technol 214:165–174

    Article  CAS  Google Scholar 

  20. Luo X, Liu YZ, Jia HF (2015) Oxid Met 83:55–70

    Article  CAS  Google Scholar 

  21. Luo X, Liu YZ, Mo ZQ, Gu CX (2015) Metall Mater Trans A 46A:2185–2193

    Article  Google Scholar 

  22. Wu M, Liu YZ, Wang T, Yu KB (2016) Mater Sci Eng A 674(30):144–150

    Article  CAS  Google Scholar 

  23. Lal K (1967) Report CEA-R 31360 Commissariat a l’Energie Atomique Paris, France, pp 23–33

    Google Scholar 

  24. Ganeshan S, Hector LG Jr, Liu Z-K (2010) Comput Mater Sci 50:301–307

    Article  CAS  Google Scholar 

  25. Das SK, Kim Y-M, Ha TK et al (2013) CALPHAD: computer coupling of phase diagrams and thermochemistry. 42:51–58

    Google Scholar 

  26. Verissimo NC, Freitas ES, Cheung N et al (2017) J Alloy Compd 723:649–660

    Article  CAS  Google Scholar 

  27. Blanco-Rodriguez P, Rodriguez-Aseguinolaza J, Risueno E, Tello M (2014) Energy 72:414–420

    Article  CAS  Google Scholar 

  28. Du YZ, Jiang BL, Ge YF (2018) Vacuum 148:27–32

    Article  CAS  Google Scholar 

  29. Luo X, Liu YZ (2016) JOM 68(12):3078–3087

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Young Scholars Development Fund of SWPU (No. 201599010066), National Science Foundation for Young Scientists of China (No. 51704255) and Open Fund of National Engineering Research Center of Near-net-shape Forming Technology for Metallic Materials, South China University of Technology (No. 2015002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, X., Fang, C., Fan, Z., Huang, B., Yang, J. (2019). Microstructure Evolution and Mechanical Properties of Medical Material Mg–3Zn Alloy Prepared by Semi-solid Powder Injection Moulding. In: TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05861-6_141

Download citation

Publish with us

Policies and ethics