Skip to main content
Log in

Study of Humidity on Moisture Transfer Characteristics in Iron Ore Sintering

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The cold permeability of a sinter bed is a complex function of the granules’ effective mean diameter and bed moisture. The binding force provided by moisture before fusion commences crucial in determining the strength of a sinter. However, excess moisture is detrimental to the propagation of the heat front, because it reduces the bed’s permeability. The source of moisture can be either the inherent moisture in the bed or from the incoming gases due to suction in the bottom of the bed. An unsteady-state mathematical model was developed in the current study to describe the moisture transport phenomena during the iron ore sintering. The model was then validated using experimental data from laboratory sintering pot tests. Using the help of the model, the effect of humidity on the moisture characteristics was then investigated. The temperature profiles revealed that the change in the solid temperatures was less than 5% with increasing humid conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(\epsilon \) :

Void fraction

\(\lambda \) :

Sphericity factor

\(\mu \) :

Viscosity of gas (Pa s)

\(\rho _{{\mathrm{g}}}\) :

Density of gas (\({\hbox {kg/m}}^{3}\))

\(\rho _{j,{\mathrm{s}}}\) :

Density of solid component i (\({\hbox {kg/m}}^{3}\,{\hbox {bed}}\))

\(\rho _{{\mathrm{s}}}\) :

Density of solid (\({\hbox {kg/m}}^{3}\,{\hbox {bed}}\))

\(\vec {v}\) :

Superficial velocity (m/s)

\(A_{{\mathrm{v}}}\) :

Area of particle per unit volume of the bed (\({\hbox {m}}^{2}/{\hbox {m}}^{3}\,{\hbox {bed}}\))

\(C_{i,{\mathrm{g}}}\) :

Concentration of gas component i (\({\hbox {mol/m}}^{3}\,{\hbox {bed}}\))

\(C_{{\mathrm{p,s/g}}}\) :

Specific heat capacity of solid/gas (J/kg K)

\(D_{{\mathrm{m}}}\) :

Mass diffusivity (\({\hbox {m}}^{2}/{\hbox {s}}\))

\(d_{{\mathrm{p}}}\) :

Particle diameter (m)

\(f_{i/i'}\) :

Partition coefficient between solid and gas

h :

Heat transfer coefficient (\({\hbox {W/m}}^{2}\,{\hbox {K}}\))

\(H_{k}\) :

Enthalpy change (J)

\(k_{w}\) :

Mass transfer coefficient for drying/condensation reaction (\({\hbox {m}}^{2}/{\hbox {s}}\))

\(M_{k}\) :

Molar mass (kg/mol)

P :

Bed pressure (Pa)

\(P_{{\mathrm{H}}_{2}{\mathrm{O}},\,{\mathrm{sat}}}\) :

Partial pressure of moisture, saturated (Pa)

R :

Universal gas constant (J/mol K)

\(R_{k}\) :

Reaction rate \({\hbox {mol/m}}^{3}\,{\hbox {s}}\)

Re:

Reynolds number (\({\hbox {Re}}= \rho v d_{{\mathrm{p}}}/ \mu \))

\(S_{{\mathrm{s/g}}}\) :

Source term in solid and gas phase

Sc:

Schmidt number (\( {\hbox {Sc}} =\mu /\rho D_{{\mathrm{m}}}\))

Sh:

Sherwood number

t :

time (s)

\(T_{{\mathrm{s/g}}}\) :

Temperature of solid/gas (K)

\(w_{{\mathrm{cr}}}\) :

Critical moisture content

Z :

Relative humidity

z :

Location along depth of bed (m)

References

  1. Nath N K, Da Silva A J, and Chakraborti N, Steel Res 68 (1997) 285.

    Article  CAS  Google Scholar 

  2. Cumming M J, Ironmak Steelmak 17 (1990) 245.

    CAS  Google Scholar 

  3. de Castro J A, Sazaki Y, and Yagi J, Mater Res 15 (2012) 848.

    Article  Google Scholar 

  4. Rankin W J, and Roller P W, Trans Iron Steel Inst Japan 25 (1985) 1016.

    Article  CAS  Google Scholar 

  5. Wajima M, Hosotani Y, Shibata J, Soma H, and Tashiro K, Tetsu-to-Hagané 68 (1982) 1719.

    Article  Google Scholar 

  6. Venkataramana R, Gupta S S, and Kapur P C, Int J Miner Process 57 (1999) 43.

    Article  CAS  Google Scholar 

  7. Ergun S, Chem Eng Prog 48 (1952) 89.

    CAS  Google Scholar 

  8. Hinkley J, Waters A G, and Litster J D, Int J Miner Process 42 (1994) 37.

    Article  CAS  Google Scholar 

  9. Nozawa K, Morioka K, Kinugasa T, Ano K, and Osuga K, ISIJ Int 53 (2013) 1510.

    Article  CAS  Google Scholar 

  10. Zhou H, Zhao J P, Loo C E, Ellis B G, and Cen K F, ISIJ Int 52 (2012) 1550.

    Article  CAS  Google Scholar 

  11. Dash I R, and Rose E, IFAC Proc 11 (1978) 151.

    Article  Google Scholar 

  12. Young RW, Proc. Ironmak. Steelmak., 1978 25.

  13. Patisson F, Bellot J P, and Ablitzer D, Metall Trans B 21 (1990) 37.

    Article  Google Scholar 

  14. Pahlevaninezhad M, Emami M D, and Panjepour M, Appl Math Model 40 (2016) 8475.

    Article  Google Scholar 

  15. Arthur J R, Trans Faraday Soc 47 (1951) 164.

    Article  CAS  Google Scholar 

  16. Green D W, and Perry R H, Perry’s Chemical Engineers’ Handbook, McGraw-Hill, New York (2008) p. 296

    Google Scholar 

  17. Muller J, de Vries T L, Dippenaar B A, and Vreugdenburg J C, J South African Inst Min Metall 115 (2015) 409.

    Article  CAS  Google Scholar 

  18. Zhang B, Zhou J, and Li M, Appl Therm Eng 131 (2018) 70.

    Article  CAS  Google Scholar 

  19. Gupta A, Studies on Sintering of Iron Ore, M.Tech Thesis, Indian Institute of Technology, Bombay, India (2012) p. 59.

  20. Sutherland W, Lond Edinb Dublin Philos Mag J Sci 36 (1893) 507.

    Article  Google Scholar 

  21. Wilke C R, J Chem Phys 18 (1950) 517.

    Article  CAS  Google Scholar 

  22. Kunii D, Suzuki M, and Ono N, J Chem Eng Japan 1 (1968) 21.

    Article  CAS  Google Scholar 

  23. Mitterlehner J, Löffler G, Winter F, Hofbauer H, Schmid H, Zwittag E, Pammer O, and Stiasny H, ISIJ Int 44 (2004) 11.

    Article  CAS  Google Scholar 

  24. Shibata J, Math Comput Model 11 (1988) 956.

    Article  Google Scholar 

  25. Patankar S, Numerical Heat Transfer and Fluid Flow: CRC Press, Taylor & Francis Group, LLC. Florida, United States; (1980) p. 77.

  26. Yang W, Ryu C, Choi S, Choi E, Lee D, and Huh W, ISIJ Int 44 (2004) 492.

    Article  CAS  Google Scholar 

  27. Venkataraman R, Gupta S S, Kapur P C, and Ramachandran N, Tata Search (India) (1998) 25.

    Google Scholar 

  28. Geiger G H, and Poirier D R, Addison-Wesley Publ. Co., Reading, Mass. (1973) p. 616.

Download references

Acknowledgements

The author would like to thank Prof. N. B. Ballal and Prof. N. N. Viswanathan at IIT Bombay for their helpful suggestions and thought-provoking discussions. The people at Ferrous Process Laboratory are also thanked for their help in carrying out the experiments. The author also acknowledges Mr. R. Gupta at McMaster University for his feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The author is currently a Ph.D. candidate in Materials Science Engineering at McMaster University. The work has been done during graduate studies at Indian Institute of Technology, Bombay.

Corresponding author

Correspondence to Angshuman Podder.

Ethics declarations

Conflict of interest

The author reported no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Angshuman Podder: Formerly at Indian Institute of Technology Bombay, Mumbai, India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podder, A. Study of Humidity on Moisture Transfer Characteristics in Iron Ore Sintering. Trans Indian Inst Met 74, 1479–1487 (2021). https://doi.org/10.1007/s12666-021-02244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02244-3

Keywords

Navigation