Skip to main content

Advertisement

Log in

Modeling of moisture diffusivity, activation energy and energy consumption in fluidized bed drying of rough rice

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present work was an attempt to assess the effective moisture diffusivity, activation energy, and energy consumption of rough rice in a batch fluidized bed dryer. Drying experiments were conducted at drying air temperatures of 50, 60, and 70 °C, superficial fluidization velocities of 2.3, 2.5, and 2.8 m/s, and solids holdup of 1.32 kg. Drying kinetics showed that the whole fluidized bed drying of rough rice occurred in the falling rate period. The effective moisture diffusivity was described by an Arrhenius equation. The evaluated effective moisture diffusivity increased with drying air temperature and superficial fluidization velocity and was found to vary from 4.78 × 10−11 to 1.364 × 10−10 m2/s with R2 higher than 0.9643. The activation energy and the pre-exponential factor of Arrhenius equation were found to be in the range of 36.59–44.31 kJ/mol and 4.71 × 10−5–7.15 × 10−4 m2/s, respectively. Both maximum values of the specific energy consumption of 74.73 MJ/kg and the total energy need of 12.43 MJ were obtained at 60 °C drying air temperature and 2.8 m/s superficial fluidization velocity. Both minimum values of the specific energy consumption of 29.98 MJ/kg and the total energy need of 4.85 MJ were obtained under drying air temperature of 70 °C and superficial fluidization velocity of 2.3 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A:

Cross sectional area of distributor plate (m2)

Ca :

Specific heat capacity of air (J/kg K)

Cv :

Specific heat capacity of water vapor (J/kg K)

Deff :

Effective moisture diffusivity (m2/s)

D0 :

Factor of Arrhenius equation (m2/s)

E:

Activation energy (kJ/mol)

m:

Mass of evaporated water (kg)

M:

Moisture content (%, d.b., kg water/kg dry solid)

Me :

Equilibrium moisture content (%, d.b.)

Mi :

Initial moisture content (%, d.b.)

MR:

Moisture ratio (dimensionless)

n:

Number of data points

r:

Radial coordinate (m)

rp :

Particle radius (m)

R:

Universal gas constant (kJ/mol K)

RH:

Relative humidity (decimal)

R2 :

Coefficient of determination

SEC:

Specific energy consumption (kJ/kg)

t:

Time (s)

td :

Total drying time (s)

T:

Drying air temperature (K)

Ta :

Ambient air temperature (K)

u:

Independent variable uncertainty (decimal)

UY :

Uncertainty (decimal)

V:

Superficial fluidization velocity (m/s)

Y:

Absolute humidity of ambient air (kg water/kg dry air)

z:

Independent variable

ρa :

Density of air (kg/m3)

References

  1. Brooker DB, Bakker-Arkema FW, Hall CW (1992) Drying and storage of grains and oilseeds. AVI Book, New York

    Google Scholar 

  2. Atthajariyakul S, Leephakpreeda T (2006) Fluidized bed paddy drying in optimal conditions via adaptive fuzzy logic control. J Food Eng 75:104–114

    Article  Google Scholar 

  3. Soponronnarit S, Prachayawarakorn S (1994) Optimum strategy for fluidized bed paddy drying. Dry Technol 12(7):1667–1686

    Article  Google Scholar 

  4. Soponronnarit S, Yapha M, Prachayawarakorn S (1995) Cross-flow fluidized bed paddy dryer: prototype and commercialization. Dry Technol 13(8–9):2207–2216

    Article  Google Scholar 

  5. Soponronnarit S, Prachayawarakorn S, Sripawatakul O (1996) Development of cross-flow fluidized bed paddy dryer. Dry Technol 14(10):2397–2410

    Article  Google Scholar 

  6. Ozdemir M, Devres YO (1999) The thin layer drying characteristics of hazelnuts during roasting. J Food Eng 42:225–233

    Article  Google Scholar 

  7. Pahlavanzadeh H, Basiri A, Zarrabi M (2001) Determination of parameters and pretreatment solution for grape drying. Dry Technol 19:217–226

    Article  Google Scholar 

  8. Doymaz I, Pala M (2002) The effects of dipping pretreatment on air-drying rates of seedless grapes. J Food Eng 52:413–417

    Article  Google Scholar 

  9. Doymaz I, Pala M (2003) The thin-layer drying characteristics of corn. J Food Eng 60:125–130

    Article  Google Scholar 

  10. Akpinar E, Midilli A, Bicer Y (2003) Single layer drying behavior of potato slices in a convective cyclone and mathematical modeling. Energy Convers Manag 44:1689–1705

    Article  Google Scholar 

  11. Babalis SJ, Belessiotis VG (2004) Influence of drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. J Food Eng 65:449–458

    Article  Google Scholar 

  12. Tarigan E, Prateepchaikul G, Yamseangsung R, Sirichote A, Tekasakul P (2006) Drying characteristics of unshelled kernels of candle nuts. J Food Eng 79:828–833

    Article  Google Scholar 

  13. Pathare PB, Sharma GP (2006) Effective moisture diffusivity of onion slices undergoing infrared convective drying. Biosyst Eng 93:285–291

    Article  Google Scholar 

  14. Doymaz I (2006) The kinetics of forced convective air-drying of pumpkin slices. J Food Eng 79:243–248

    Article  Google Scholar 

  15. Goyal RK, Kingsly ARP, Manikantan MR, Ilyas SM (2007) Mathematical modeling of thin layer drying kinetics of plum in a tunnel dryer. J Food Eng 79:176–180

    Article  Google Scholar 

  16. Aghbashlo M, Kianmehr MH, Samimi-Akhijahani H (2008) Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Convers Manag 49:2865–2871

    Article  Google Scholar 

  17. Arumuganathan T, Manikantan MR, Rair D, Anandakumar S, Khare V (2009) Mathematical modeling of drying kinetics of milky mushroom in a fluidized bed dryer. Int Agrophys 23:1–7

    Google Scholar 

  18. Doymaz I (2013) Hot-air drying of purslane (Portulaca oleracea L.). Heat Mass Transf 49:835–841. doi:10.1007/s00231-013-1128-9

    Article  Google Scholar 

  19. Torki-Harchegani M, Ghanbarian D, Sadeghi M (2014) Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods. Heat Mass Transf. doi:10.1007/s00231-014-1483-1

    Google Scholar 

  20. Tasirin SM, Kamarudin SK, Jaafar K, Lee KF (2007) The drying kinetics of bird’s chillies in a fluidized bed dryer. J Food Eng 79:695–705

    Article  Google Scholar 

  21. Srinivasakannan C, Balasubramanian N (2009) An investigation on drying of millet in fluidized beds. Adv Powder Technol 20:298–302

    Article  Google Scholar 

  22. Srinivasakannan C, Balasubramanian N (2009) Estimation of diffusion parameters in fluidized bed drying. Adv Powder Technol 20:390–394

    Article  Google Scholar 

  23. Amiri Chayjan R, Amiri Parian J, Esna-Ashari V (2011) Modeling of moisture diffusivity, activation energy and specific energy consumption of high moisture corn in a fixed and fluidized bed convective dryer. Span J Agric Res 9:28–40

    Article  Google Scholar 

  24. Parlak N (2014) Fluidized bed drying characteristics and modeling of ginger (Zingiber officinale) slices. Heat Mass Transf. doi:10.1007/s00231-014-1480-4

    Google Scholar 

  25. ASAE (1984) Standard S352.1: moisture measurements. Grain and seeds, agricultural engineer yearbook. American Society of Agriculture Engineers, St. Joseph

    Google Scholar 

  26. Mujumdar AS (2006) Handbook of industrial drying. Taylor and Francis Group, LLC

    Book  Google Scholar 

  27. Zhao Y (1988) Diffusion in potato drying. J Food Eng 7:249–262

    Article  Google Scholar 

  28. Crank J (1975) The mathematics of diffusion. Oxford University Press, New York

    MATH  Google Scholar 

  29. Perry HS (1984) Chemical engineer’s handbook. McGraw Hill, New York

    Google Scholar 

  30. Khanali M, Aghbashlo M, Rafiee S, Jafari A (2013) Exergetic performance assessment of plug flow fluidised bed drying process of rough rice. Int J Exergy 13:387–407

    Article  Google Scholar 

  31. Ozahi E, Demir H (2014) Presentation of a test rig with its experimental procedure and uncertainty analysis of measurements for batch type fluidized bed drying of corn and unshelled pistachio nut. Measurement 53:117–127

    Article  Google Scholar 

  32. Kannan CS, Thomas PP, Varma YBG (1995) Drying of solids in fluidized beds. Ind Eng Chem Res 34:3068–3077

    Article  Google Scholar 

  33. Cil B, Topuz A (2010) Fluidized bed drying of corn, bean and chickpea. J Food Process Eng 33:1079–1096

    Article  Google Scholar 

  34. Perea-Flores MJ, Garibay-Febles V, Chanona-Perez JJ, Calderon-Dominguez G, Mendez-Mendez JV, Palacios-Gonzalez E, Gutierrez-Lopez GF (2012) Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Ind Crop Prod 38:64–71

    Article  Google Scholar 

  35. Meziane S (2011) Drying kinetics of olive pomace in a fluidized bed dryer. Energy Convers Manag 52:1644–1649

    Article  Google Scholar 

  36. Tasirin SM, Puspasari I, Lun AW, Chai PV, Lee WT (2014) Drying of kaffir lime leaves in a fluidized bed dryer with inert particles: kinetics and quality determination. Ind Crop Prod 61:193–201

    Article  Google Scholar 

  37. Srinivasakannan C, Subbarao S, Varma YBG (1994) A kinetic model for drying of solids in batch fluidized beds. Ind Eng Chem Res 33:363–370

    Article  Google Scholar 

  38. Zogzas NP, Moroulis ZB, Marinos-kouris D (1996) Moisture diffusivity data compilation in foodstuffs. Dry Technol 14:2225–2253

    Article  Google Scholar 

  39. Gazor HR, Mohsenimanesh A (2010) Modelling the drying kinetics of canola in fluidised bed dryer. Czech J Food Sci 28:531–537

    Google Scholar 

  40. Steffe JF, Singh RP (1982) Diffusion coefficients for predicting rice drying behavior. J Agric Eng Res 27:489–493

    Article  Google Scholar 

  41. Aguerre R, Suarez C, Viollaz PE (1982) Drying kinetic of rough rice grain. Int J Food Sci Technol 17:679–686. doi:10.1111/j.1365-2621.1982.tb00227.x

    Article  Google Scholar 

  42. Verma LR, Bucklin RA, Endan JB, Wratten FT (1985) Effects of drying air parameters on rice drying models. Trans ASAE 85:296–301

    Article  Google Scholar 

  43. Iguaz A, San Martin MB, Mate JI, Fernandez T, Virseda P (2003) Modelling effective moisture diffusivity of rough rice (Lido cultivar) at low drying temperatures. J Food Eng 59:253–258

    Article  Google Scholar 

  44. Doymaz I (2004) Convective air drying characteristics of thin layer carrots. J Food Eng 61:359–364

    Article  Google Scholar 

  45. Mohaprtra D, Rao PS (2005) A thin layer drying model of parboiled wheat. J Food Eng 66:513–518

    Article  Google Scholar 

  46. Resende O, Corrêa PC, Jarén C, Moure AJ (2007) Bean moisture diffusivity and drying kinetics: a comparison of the liquid diffusion model when taking into account and neglecting grain shrinkage. Span J Agric Res 5:51–58

    Article  Google Scholar 

  47. Madhiyanon T, Phila A, Soponronnarit S (2009) Models of fluidized bed drying for thin-layer chopped coconut. Appl Therm Eng 29:2849–2854

    Article  Google Scholar 

  48. Motevali A, Minaei S, Khoshtagaza MH (2011) Evaluation of energy consumption in different drying methods. Energy Convers Manag 52:1192–1199

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank University of Tehran for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Khanali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanali, M., Banisharif, A. & Rafiee, S. Modeling of moisture diffusivity, activation energy and energy consumption in fluidized bed drying of rough rice. Heat Mass Transfer 52, 2541–2549 (2016). https://doi.org/10.1007/s00231-016-1763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1763-z

Keywords

Navigation