Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of the Joint Fabricated Between Stainless Steel and Copper Using Gas Metal Arc Welding

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present paper dealt with characterizing microstructure and mechanical properties of the dissimilar weldment between stainless steel and copper obtained by gas metal arc welding using HS201 filler material. The results showed that the copper/weld interface was free of any defects, while the stainless steel/weld interface consisted of a melted unmixed zone with inhomogeneous distribution of composition. The weld showed a hybrid microstructure, which contained significant amount of steel globules and dendrites with different sizes. The hardness distribution of the weld was inhomogeneous, and an obvious reduction in microhardness of the heat-affected zone of copper was observed compared to that of the base metal of copper. Furthermore, all tensile specimens fractured at the heat-affected zone of copper, and the average tensile strength of welded joint reached 209.5 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang Y F, Huang J H, Ye Z, and Cheng Z J Manuf Process 27 (2017) 221.

    Article  Google Scholar 

  2. Chen S H, Zhang M X, Huang J H, Cui C J, Zhang H, and Zhao X K, Mater Des 53 (2014) 504

    Article  CAS  Google Scholar 

  3. Cao J, Gong Y, Zhu K, Yang Z G, Luo X M, and Gu F M, Mater Des 32 (2011) 2760.

    Google Scholar 

  4. Zhou L, Li Z Y, Song X G, Tan C W, He Z Z, Huang Y X, and Feng J C, J Alloys Compd 717 (2017) 78.

    Article  CAS  Google Scholar 

  5. Wang T, Zhang B G, and Feng J C, Trans Nonferr Met Soc China 24 (2014) 108.

    Article  CAS  Google Scholar 

  6. Zhang B G, Zhao J, Li X P, and Feng J C, Trans Nonferr Met Soc China 24 (2014) 4059.

    Article  CAS  Google Scholar 

  7. Switzner N, Queiroz H, Duerst J, and Yu Z, Mater Sci Eng A 709 (2018) 55.

    Article  CAS  Google Scholar 

  8. Shiri S G, Nazarzadeh M, Sharifitabar M, and Afarani M S, Trans Nonferr Met Soc China 22 (2012) 2937.

    Article  CAS  Google Scholar 

  9. Zhang Y F, Huang J H, Chi H, Cheng N, Cheng Z, and Chen S H, Mater Lett 156 (2015) 7.

    Article  CAS  Google Scholar 

  10. Yao C W, Xu B S, Zhang X C, Huang J, Fu J, and Wu Y X, Opt Laser Eng 47 (2009) 807.

    Article  Google Scholar 

  11. Magnabosco I, Ferro P, Bonollo F, and Arnberg L, Mater Sci Eng A 424 (2006) 163.

    Article  Google Scholar 

  12. Shu X, Chen G Q, Liu J P, Zhang B G, and Feng J C, Mater Lett 213 (2018) 374.

    Article  CAS  Google Scholar 

  13. Kar J, Roy S K, and Roy G G, J Mater Process Technol 233 (2016) 174.

    Article  CAS  Google Scholar 

  14. Kuryntsev S V, Morushkin A E, and Gilmutdinov A K, Opt Laser Eng 90 (2017) 101.

    Article  Google Scholar 

  15. Chen S, Huang J H, Xia J, Zhao X K, and Lin S B, J Mater Process Technol 222 (2015) 43.

    Article  CAS  Google Scholar 

  16. Mai T A, and Spowage A C, Mater Sci Eng A 374 (2004) 224.

    Article  Google Scholar 

  17. Zhang H, Jiao K X, Zhang J L, and Liu J P, Mater Sci Eng A 731 (2018) 278.

    Article  CAS  Google Scholar 

  18. Sabetghadam H, Hanzaki A Z, and Araee A, Mater Charact 61 (2010) 626.

    Article  CAS  Google Scholar 

  19. Shokri V, Sadeghi A, and Sadeghi M H, Mater Sci Eng A 693 (2017) 111.

    Article  CAS  Google Scholar 

  20. Imani Y, Besharati M K, and Guillot M, Adv Mater Res 409 (2011) 263.

    Article  Google Scholar 

  21. Saravanan S, Raghukandan K, and Hokamoto K, Arch Civ Mech Eng 16 (2016) 5663.

    Article  Google Scholar 

  22. Saranarayanan R, Lakshnimarayanan A K, and Venkatraman B, Arch Civ Mech Eng 19 (2019) 251.

    Article  Google Scholar 

  23. Chang C C, Wu L H, Shueh C, Chan C K, Shen I C, and Kuan C K, Int J Adv Manuf Technol 91 (2016) 2217.

    Article  Google Scholar 

  24. Velu M, and Bhat S, Mater Des 47 (2013) 793.

    Article  CAS  Google Scholar 

  25. Hong Y C, J Mag Staff Work Univ 13 (2003) 13.

    Google Scholar 

  26. Hu H Q, Shen F N, Yao S, and Wang Z D, Metal Solidification Principle. China Machine Press, Beijing (2000), p 117.

    Google Scholar 

  27. Roy C, Pavanan V V, Vishnu G, and Hari P R, Procedia Mater Sci 5 (2014) 2503.

    Article  CAS  Google Scholar 

  28. Switzner N, Queiroz H, and Duerst J, Mater Sci Eng A 709 (2018) 55.

    Article  CAS  Google Scholar 

  29. Ramachandran S, and Lakshminarayanan A K, Trans Nonferr Met Soc China 30 (2020) 727.

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China, grant number 51974243, and the Natural Science Foundation of Shanxi Province, grant number 2019JZ-31, and the Natural Science Foundation of Shanxi Province, grant number 2020JQ-637.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, Y., Li, J. et al. Microstructure and Mechanical Properties of the Joint Fabricated Between Stainless Steel and Copper Using Gas Metal Arc Welding. Trans Indian Inst Met 74, 969–978 (2021). https://doi.org/10.1007/s12666-021-02208-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02208-7

Keywords

Navigation