Skip to main content
Log in

Effects of Pouring and Mold Temperatures on the Fluidity and Hot Tearing Susceptibility of Al–3.5Si–0.5Mg–0.4Cu Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The effects of pouring and mold temperatures on the fluidity and hot tearing susceptibility (HTS) of Al–3.5Si–0.5Mg–0.4Cu alloy were investigated by the spiral mold test and the constrained-rod casting mold test, respectively. Optical microscope (OM) and scanning electron microscope (SEM) were carried out for microstructure observation. The results showed that the flow length (Lf) of Al–3.5Si–0.5Mg–0.4Cu alloy increased with increasing pouring temperature (T) and mold temperature (T0). Moreover, the functional relationship between the fluidity and casting parameters was obtained by fitting the fluidity data as: \( L_{f} \, = \, 60.9 \, + \, 1082.4\text{[}\Delta T/T - T_{0} \text{]} \). The hot tearing mechanism was analyzed by observing the microstructure of the hot crack, and the HTS of the alloy with the mold and pouring temperatures was discussed in detail. According to the research, to achieve a lower hot tearing susceptibility under better fluidity, the suggested pouring and mold temperatures are 740 °C and 200 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hirsch J, Trans Nonferr Met Soc China 24 (2014) 1995.

    Article  CAS  Google Scholar 

  2. Mavhungu S T, Akinlabi E T, Onitiri M A, and Varachia F M, Procedia Manuf 7 (2017) 178.

    Article  Google Scholar 

  3. Hirsch J and Al-Samman T, Acta Materialia 61 (2013) 818.

    Article  CAS  Google Scholar 

  4. Zhou J, Wan X M, and Li Y, Mater Today: Proc 2 (2015) 5015.

    Google Scholar 

  5. Shaji M C, Ravikumar K K, Ravi M, and Sukumaran K, Development of a high strength cast aluminum alloy for possible automotive applications, Materials Science Forum, 765 (2013) 54.

    Article  Google Scholar 

  6. Eskin D G, Katgerman L, Mater Sci For 561–565 (2007) 995.

    Google Scholar 

  7. Flemings M, Trans Metall Soc AIME 5 (1974) 2121.

    Article  CAS  Google Scholar 

  8. Sabatino M D, Arnberg L, and Apelian D, Int J Metalcast 2(3) (2008) 17.

    Article  Google Scholar 

  9. Ravi K R, Pillai R M, Amaranathan, K R, Pai B C, and Charkraborty M, J Alloys Compounds, 456 (2008) 201.

    Article  CAS  Google Scholar 

  10. Sabatino M D and Arnberg L, Trans Indian Inst Met 62 (2009) 321.

    Article  Google Scholar 

  11. Surappa M K and Rohatgi P K, Metall Mater Trans B 12 (1981) 327.

    Article  Google Scholar 

  12. Li S, Apelian D, and Sadayappan K, Mater Sci For 690 (2011) 355.

    Article  CAS  Google Scholar 

  13. Birru A K, Karunakar D B, and Mahapatra M M, Trans Indian Inst Met 65 (2012) 97.

    Article  CAS  Google Scholar 

  14. Eskin D G, and Katgerman, Metall Mater Trans A 38A (2007) 1511.

  15. Liu J W and Kou S, Acta Materialia 125 (2017) 513.

    Article  CAS  Google Scholar 

  16. Kwon Y D and Lee Z H, Mater Sci Eng A 360 (2003) 372.

  17. Lin S, Aliravci C, and Pekguleryumz M O, Metall Mater Trans A 38A (2007) 1056.

    Article  CAS  Google Scholar 

  18. Puparattanapong K, Pandee P, Boontein S, and Limmaneevichitr C, Trans Indian Inst Met 71 (2018) 1583.

    Article  CAS  Google Scholar 

  19. Hua Q, Gao D, Zhang H J, Zhang Y H, and Zhai Q J, Mater Sci Eng A 444 (2007) 69.

    Article  Google Scholar 

  20. Pulivarti S R and Birru A K, Trans Indian Inst Met 71(7) (2018) 1735.

    Article  CAS  Google Scholar 

  21. Yim C D, You B S, Jang R S, and Lim S G, J Mater Sci 41(8) (2006) 2347.

    Article  CAS  Google Scholar 

  22. Flemings M C, Mollard F R, and Taylor H F, AFS Trans 69 (1961) 566.

    CAS  Google Scholar 

  23. Novikov I I, Hot Shortness of Non-Ferrous Metals and Alloys, Nauka, Moscow (1966), p 299.

    Google Scholar 

  24. Sigworth G K, Hot Tearing of Metals, AFS Trans 104 (1996) 1053.

    CAS  Google Scholar 

  25. Xu R F, Zheng H L, Luo J, Ding S P, Zhang S P, and Tian X L, Trans Nonferr Met Soc China 24(7) (2014) 2203.

    Article  CAS  Google Scholar 

  26. Suyitno, Eskin D G, and Katgerman L, Mater Sci Eng A 420(1–2) (2006) 1.

  27. Rathi S K, Sharma A, and Sabatino M D, Eng Failure Anal 79 (2017) 592.

    Article  CAS  Google Scholar 

  28. Zhou Y, Mao P, Wang Z, Li Y Z, Liu Z, and Wang F, Metall Mater Trans B 49 (2018) 3444.

  29. Bichler L, Elsayed A, Lee K, and Ravindran C, Int J Metalcast 2(1) (2008) 43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is written within the framework of the National Key R&D Project of China: “Integration and development of lightweight electric drive chassis angle module,” Project No. 2018YFB0104804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HengHua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, G., Zhang, H., Yang, Y. et al. Effects of Pouring and Mold Temperatures on the Fluidity and Hot Tearing Susceptibility of Al–3.5Si–0.5Mg–0.4Cu Alloy. Trans Indian Inst Met 73, 2511–2517 (2020). https://doi.org/10.1007/s12666-020-02058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02058-9

Keywords

Navigation