Skip to main content

Advertisement

Log in

Elevated Temperature Compression Behavior of Al–Cu50Zr50 Nano-laminates

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work, molecular dynamics simulation studies are performed to investigate the deformation behavior of Al (metal)–Cu50Zr50 (metallic glass) nano-laminates. Three-layer nano-laminate models have been used for compression studies in which Cu50Zr50 metallic glass (thickness = 34 Å) is a sandwich layer between the two Al layers (33 Å thick). Al is modeled as a single crystal and polycrystal (average grain size ~ 3.5 nm). The deformation studies have been carried out by subjecting the nano-laminates to compression loading (y-axis; periodic boundary) at a strain rate of 1010 s−1 and temperatures of 400 K and 500 K. The simulation results show that the nano-laminate with Al as a polycrystalline structure exhibits higher yield strength as compared to the nano-laminate with Al as a single crystal [σAl,Polycrystal = 0.376 GPa (400 K); σAl,single crystal = 0.272 GPa (400 K); σAl,Polycrystal = 0.152 GPa (500 K); σAl,single crystal = 0.129 GPa (500 K)]. The higher strength is attributed to the low dislocation density as observed from dislocation extraction algorithm analysis. Also, the flow stress decreases with temperature due to softening as expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Song H Y, Yin P, Zuo X D, An M R, and Li Y L, J Non Cryst Solids500 (2018) 121.

    Article  CAS  Google Scholar 

  2. Song H Y, Xu J J, Zhang Y G, Li S, Wang D H, and Li Y L, Mater Des127 (2017) 173.

    Article  CAS  Google Scholar 

  3. Sterwerf C, Kaub T, Deng C, Thompson G B, and Li L, Thin Solid Films626 (2017) 184.

    Article  CAS  Google Scholar 

  4. Song H Y, Xu J J, Deng Q, and Li Y L, Phys Lett A383 (2019) 215.

    Article  CAS  Google Scholar 

  5. Ward L, Miracle D, Windl W, Senkov O N, and Flores K, Phys Rev B88 (2013) 134205.

    Article  Google Scholar 

  6. Hirel P, Comput Phys Commun197 (2015) 212.

    Article  CAS  Google Scholar 

  7. Plimpton S, J Comput Phys117 (1995) 1. file:///D:/ash/aswin-new/files/715/Plimpton - 1995 - Fast Parallel Algorithms for Short-Range Molecular.pdf.

  8. Zhou X W, Johnson R A, and Wadley H N G, Phys Rev B69 (2004) 144113.

    Article  Google Scholar 

  9. Nosé S, Mol Phys52 (1984) 255.

    Article  Google Scholar 

  10. Hoover W G, Phys Rev A31 (1985) 1695.

    Article  CAS  Google Scholar 

  11. Gupta P, Pal S, and Yedla N, Mater Des105 (2016) 41.

    Article  CAS  Google Scholar 

  12. Gupta P, and Yedla N, J Mater Eng Perform26 (2017) 5694. https://doi.org/10.1007/s11665-017-3026-7.

    Article  CAS  Google Scholar 

  13. Stukowski A, Model Simul Mater Sci Eng18 (2010) 15012. https://doi.org/10.1088/0965-0393/18/1/015012.

    Article  Google Scholar 

  14. Wei Y D, Peng P, Yan Z Z, Kong L T, Tian Z A, Dong K J, and Liu R S, Comput Mater Sci123 (2016) 214. https://doi.org/10.1016/j.commatsci.2016.06.030.

    Article  CAS  Google Scholar 

  15. Chen M, Ma E, Hemker K J, Sheng H, Wang Y, and Cheng X, Science300 (2003) 1275. https://doi.org/10.1126/science.1083727.

    Article  CAS  Google Scholar 

  16. Tolvanen A, and Albe K, Beilstein J Nanotechnol4 (2013) 173.

    Article  CAS  Google Scholar 

  17. Van Swygenhoven H, Spaczer M, Caro A, and Farkas D, Phys Rev B60 (1999) 22.

    Article  Google Scholar 

  18. Lee M, Lee C, Lee K, Ma E, and Lee J, Acta Mater59 (2011) 159. https://doi.org/10.1016/j.actamat.2010.09.020.

    Article  CAS  Google Scholar 

  19. Wakeda M, Shibutani Y, Ogata S, and Park J, Intermetallics15 (2007) 139.

    Article  CAS  Google Scholar 

  20. Feng S, Qi L, Li G, and Liu R, J Nanomater2014 (2014) 71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natraj Yedla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Vaduganathan, K. & Yedla, N. Elevated Temperature Compression Behavior of Al–Cu50Zr50 Nano-laminates. Trans Indian Inst Met 73, 1579–1585 (2020). https://doi.org/10.1007/s12666-020-01933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01933-9

Keywords

Navigation