Skip to main content
Log in

Impact of crystalline–amorphous interface on shock response of metallic glass Al90Sm10/crystalline Al nanolaminates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, structural evolution of single-crystal Al (SC)-metallic glass (MG) Al90Sm10 nanolaminate specimens under shock compression has been investigated using molecular dynamics simulations. Shock profile analysis of the SC-MG nanolaminate specimen reveals the presence of elastic precursor at lower piston velocity in the crystalline region of the nanolaminates eventuating due to plane-plane collision. Shock-induced martensitic phase transformation is apparent in the nanolaminate specimen at higher shock intensities. Rarefaction waves are observed to be generated at the crystalline–amorphous interface, which aid in stabilization of the transformed martensitic phase. The role of interface reverses with altering the direction of shockwave to induce from the metallic glass end of the nanolaminate. The attenuation of shockwave in the amorphous MG region and the absence of rarefaction waves at the interface impede the martensitic phase transformation. Icosahedral-like cluster < 0, 2, 8, 4 > is found to be most resistant to shockwave deformation as analyzed using Voronoi cluster analysis. Formation of shear transformation zones (STZs) plays a vital role in absorbing the shock in the metallic glass region of nanolaminate specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Bergman, Y. Benjamin, (2017) U.S. Patent 9.696,122.

  2. X. Nie, A. Leyland, H.W. Song, A.L. Yerokhin, S.J. Dowey, A. Matthews, Surf. Coat. Technol. 116, 1055 (1999). https://doi.org/10.1016/S0257-8972(99)00089-4

    Article  Google Scholar 

  3. I.J. Polmear, Metallurgy of the Light Metals, 5th edn. (Edward Arnold, 1995)

    Google Scholar 

  4. J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, U. Ramamurty, Acta Mater. 115, 285 (2016). https://doi.org/10.1016/j.actamat.2016.06.009

    Article  ADS  Google Scholar 

  5. J.R. Davis, (1999) Corrosion of aluminum and aluminum alloys. ASM International

  6. RK Yadav, N Hasan, A Yadav, F Dhauj, A Chikkani, IJCSMS 11(2)

  7. J.Y. Zhang, G. Liu, J. Sun, Acta Mater. 66, 22 (2014). https://doi.org/10.1016/j.actamat.2013.11.061

    Article  ADS  Google Scholar 

  8. Y. Wang, J. Zhou, S. Zhang, L. Wang, Mat. Des. 51, 88 (2013). https://doi.org/10.1016/j.matdes.2013.04.010

    Article  Google Scholar 

  9. H. Noori, B. Mortazavi, L. Keshtkari, X. Zhuang, T. Rabczuk, Appl. Phys. A. 127, 541 (2021). https://doi.org/10.1007/s00339-021-04693-5

    Article  ADS  Google Scholar 

  10. H. Noori, B. Mortazavi, A. Di Pierro, E. Jomehzadeh, X. Zhuang, Z. Goangseup, K. Sang-Hyun, T. Rabczuk, Comput. Mater. Contin. 65(3), 2009 (2020). https://doi.org/10.32604/cmc.2020.011256

    Article  Google Scholar 

  11. N.K. Bourne, K. Bennett, A.M. Milne, S.A. MacDonald, J.J. Harrigan, J.C.F. Millett, Scr Mater. 58(2), 154 (2008). https://doi.org/10.1016/j.scriptamat.2007.07.044

    Article  Google Scholar 

  12. N.K. Bourne, G.T. Gray III., J.C.F. Millett, J. Appl. Phys. 106(9), 12 (2009). https://doi.org/10.1063/1.3218758

    Article  Google Scholar 

  13. P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, S. Li, J. Mech. Phys. Solids 53(10), 2206 (2005). https://doi.org/10.1016/j.jmps.2005.05.003

    Article  ADS  Google Scholar 

  14. M.F. Rose, T.L. Berger, Philos. Mag. 17(150), 1121 (1968). https://doi.org/10.1080/14786436808223190

    Article  ADS  Google Scholar 

  15. A.S. Appleton, J.S. Waddington, Philos. Mag. 12(116), 273 (1965). https://doi.org/10.1080/14786436508218870

    Article  ADS  Google Scholar 

  16. G.I. Kanel, S.V. Razorenov, V.E. Fortov, J. Phys. Condens. Matter. 16(14), S1007 (2004). https://doi.org/10.1088/0953-8984/16/14/010

    Article  ADS  Google Scholar 

  17. X. He, J.L. Rong, D.L. Xiang, H.Y. Wei, C.H. Hu, X. Wang, J. Mech. 35(2), 267 (2019). https://doi.org/10.1017/jmech.2017.98

    Article  Google Scholar 

  18. V. Skripnyak, AIP Conf. Proc. 1426(1), 965 (2012)

    Article  ADS  Google Scholar 

  19. Z.J. Jiang, J.Y. He, H.Y. Wang, H.S. Zhang, Z.P. Lu, L.H. Dai, Mater Res Lett 4(4), 226 (2016). https://doi.org/10.1080/21663831.2016.1191554

    Article  Google Scholar 

  20. A. Neogi, N. Mitra, Modell. Simul. Mater. Sci. Eng. 25(2), 025013 (2017). https://doi.org/10.1088/1361-651X/aa5850

    Article  ADS  Google Scholar 

  21. P. Wen, B. Demaske, D.E. Spearot, S.R. Phillpot, J. Mater. Sci. 53(8), 5719 (2018). https://doi.org/10.1007/s10853-017-1666-5

    Article  ADS  Google Scholar 

  22. K.V. Reddy, C. Deng, S. Pal, Acta Mater. 164, 347 (2019). https://doi.org/10.1016/j.actamat.2018.10.062

    Article  ADS  Google Scholar 

  23. S. Mishra, S. Pal, J. Non-Cryst, Solids. 500, 249 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.08.006

    Article  Google Scholar 

  24. M. Meraj, C. Deng, S. Pal, J. Appl. Phys. 123(4), 044306 (2018). https://doi.org/10.1063/1.5012960

    Article  ADS  Google Scholar 

  25. S.N. Luo, T.C. Germann, D.L. Tonks, Q. An, J. Appl. Phys. 108(9), 093526 (2010). https://doi.org/10.1063/1.3506707

    Article  ADS  Google Scholar 

  26. B.J. Demaske, P. Wen, S.R. Phillpot, D.E. Spearot, J. Appl. Phys. 123(21), 215101 (2018). https://doi.org/10.1063/1.5025650

    Article  ADS  Google Scholar 

  27. X.C. Tang, W.R. Jian, J.Y. Huang, F. Zhao, C. Li, X.H. Xiao, X.H. Yao, S.N. Luo, J. Mater. Sci. Eng. A 711, 284 (2018). https://doi.org/10.1016/j.msea.2017.11.032

    Article  Google Scholar 

  28. C.T. Wang, Y. He, C. Ji, Y. He, W. Han, X. Pan, Intermetallics 93, 383 (2018). https://doi.org/10.1016/j.intermet.2017.11.004

    Article  Google Scholar 

  29. S. Zhao, T.C. Germann, A. Strachan, Phys. Rev. B. 76(1), 014103 (2007). https://doi.org/10.1103/PhysRevB.76.014103

    Article  ADS  Google Scholar 

  30. H. Xiang, H. Li, T. Fu, W. Zhu, C. Huang, B. Yang, X. Peng, Appl. Surf. Sci. 427, 219 (2018). https://doi.org/10.1016/j.apsusc.2017.07.268

    Article  ADS  Google Scholar 

  31. M. Xiang, Y. Liao, K. Wang, G. Lu, J. Chen, Int. J. Plast. 103, 23 (2018). https://doi.org/10.1016/j.ijplas.2017.12.005

    Article  Google Scholar 

  32. M.I. Mendelev, F. Zhang, Z. Ye, Y. Sun, M.C. Nguyen, S.R. Wilson, C.Z. Wang, K.M. Ho, Modell. Simul. Mater. Sci. Eng. 23(4), 045013 (2015). https://doi.org/10.1088/0965-0393/23/4/045013

    Article  ADS  Google Scholar 

  33. S. Plimpton, J. Comput. Phys. 117(1), 1 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  Google Scholar 

  34. G.B. Bokas, L. Zhao, J.H. Perepezko, I. Szlufarska, Scr. Mater. 124, 99 (2016). https://doi.org/10.1016/j.scriptamat.2016.06.045

    Article  Google Scholar 

  35. Y. Sun, Y. Zhang, F. Zhang, Z. Ye, Z. Ding, C.Z. Wang, K.M. Ho, J. Appl. Phys. 120(1), 015901 (2016). https://doi.org/10.1063/1.4955223

    Article  ADS  Google Scholar 

  36. D. Faken, H. Jónsson, Comput. Mater. Sci. 2(2), 279 (1994). https://doi.org/10.1016/0927-0256(94)90109-0

    Article  Google Scholar 

  37. C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Phys. Rev. B. 58(17), 11085 (1998). https://doi.org/10.1103/PhysRevB.58.11085

    Article  ADS  Google Scholar 

  38. S.D. Feng, W. Jiao, S.P. Pan, L. Qi, W. Gao, L.M. Wang, G. Li, M.Z. Ma, R.P. Liu, J Non-Cryst Solids 430, 94 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.10.012

    Article  ADS  Google Scholar 

  39. J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91(19), 4950 (1987). https://doi.org/10.1021/j100303a014

    Article  Google Scholar 

  40. R. Ravelo, T.C. Germann, O. Guerrero, Q. An, B.L. Holian, Phys. Rev. B 88(13), 134101 (2013). https://doi.org/10.1103/PhysRevB.88.134101

    Article  ADS  Google Scholar 

  41. R.A. Austin, J. Appl. Phys. 123(3), 035103 (2018). https://doi.org/10.1063/1.5008280

    Article  ADS  Google Scholar 

  42. W.H. Lee, X.H. Yao, W.R. Jian, Q. Han, Comput. Mater. Sci. 98, 297 (2015). https://doi.org/10.1016/j.commatsci.2014.11.029

    Article  Google Scholar 

  43. N. Gunkelmann, E.M. Bringa, H.M. Urbassek, J. Appl. Phys. 118(18), 185902 (2015). https://doi.org/10.1063/1.4935452

    Article  ADS  Google Scholar 

  44. A.S. Rogachev, S.G. Vadchenko, A.S. Aronin, S. Rouvimov, A.A. Nepapushev, I.D. Kovalev, F. Baeas, O. Politano, S.A. Rogachev, A.S. Mukasyan, Appl. Phys. Lett. 111(9), 093105 (2017). https://doi.org/10.1063/1.4985261

    Article  ADS  Google Scholar 

  45. E.B. Zaretsky, G.I. Kanel, J. Appl. Phys. 112(7), 073504 (2012). https://doi.org/10.1063/1.4755792

    Article  ADS  Google Scholar 

  46. G.I. Kanel, S.V. Razorenov, K. Baumung, J. Singer, J. Appl. Phys. 90(1), 136 (2001). https://doi.org/10.1063/1.1374478

    Article  ADS  Google Scholar 

  47. G. Agarwal, A.M. Dongare, J. Appl. Phys. 119(14), 145901 (2016). https://doi.org/10.1063/1.4944942

    Article  ADS  Google Scholar 

  48. L. Wu, K. Wang, S. Xiao, H. Deng, W. Zhu, W. Hu, Comput. Mater. Sci. 122, 1 (2016). https://doi.org/10.1016/j.commatsci.2016.05.010

    Article  Google Scholar 

  49. A. Neogi, N. Mitra, In AIP Conference Proceedings. 1832(1), 030011 (2017)

    Article  Google Scholar 

  50. K.V. Reddy, S. Pal, Steel Res. Int. 1800636, 1 (2019). https://doi.org/10.1002/srin.201800636

    Article  Google Scholar 

  51. Y.E. Kalay, L.S. Chumbley, M.J. Kramer, I.E. Anderson, Intermetallics 18(8), 1676 (2010). https://doi.org/10.1016/j.intermet.2010.05.005

    Article  Google Scholar 

  52. J. Hwang, (2011) Ph.D. thesis, Harvard University.

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Srishti Mishra performed data curation, formal analysis, investigation, software, methodology, visualization, validation, writing—original draft. K. Vijay Reddy contributed to validation, resources, project administration, supervision, writing—review and editing. Snehanshu Pal done conceptualization, data curation, funding acquisition, investigation, methodology, project administration, resources, software, supervision, validation, and writing—review and editing.

Corresponding author

Correspondence to Snehanshu Pal.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Data Availability

The raw/processed data required to reproduce these findings can be shared upon request.

Code availability

The code for the simulations can be provided upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Reddy, K.V. & Pal, S. Impact of crystalline–amorphous interface on shock response of metallic glass Al90Sm10/crystalline Al nanolaminates. Appl. Phys. A 127, 774 (2021). https://doi.org/10.1007/s00339-021-04929-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04929-4

Keywords

Navigation