Skip to main content
Log in

Effect of Graphene Nanoplatelets Addition on the Mechanical, Tribological and Corrosion Properties of Cu–Ni/Gr Nanocomposite Coatings by Electro-co-deposition Method

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Nowadays, corrosion of metals is a major problem faced by marine, chemical and automobile industries. Therefore, several researchers are taking efforts to develop composite coatings reinforced with nanoscale materials for high corrosion resistance. In the present work, graphene nanoplatelets (Gr) are incorporated with Cu–Ni matrix to fabricate Cu–Ni/Gr nanocomposite coatings by electro-co-deposition method. Also, the influence of the various concentrations of graphene nanoplatelets in the plating bath on the surface morphology, elemental composition, microstructure, crystallite size, lattice strain, microhardness, average friction coefficient, wear loss and corrosion resistance of these coatings have been studied. The study shows that the mechanical, tribological and corrosion properties of the coatings are enhanced with graphene nanoplatelets incorporation in Cu–Ni matrix. The measured microhardness for Cu–Ni/Gr (400 mg/L) nanocomposite coating increases by 44.17% compared to pure Cu–Ni coating. Also, immersion study indicates that the incorporation of graphene nanoplatelets stabilizes the corrosion potential and enhances the corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Belgamwar S U, and Sharma N N, Mater Sci Eng B178 (2013) 1452.

    Article  CAS  Google Scholar 

  2. Jagannadham K, Metall Mater Trans B Process Metall Mater Process Sci43 (2012) 316.

    Article  CAS  Google Scholar 

  3. Gao X, Yue H, Guo E, Zhang H, Lin X, Yao L, and Wang B, Powder Technol301 (2016) 601.

    Article  CAS  Google Scholar 

  4. Mohan S, and Rajasekaran N, Surf Eng27 (2011) 519.

    Article  CAS  Google Scholar 

  5. Calleja P, Esteve J, Cojocaru P, Magagnin L, Vallés E, and Gómez E, Electrochim Acta62 (2012) 381.

    Article  CAS  Google Scholar 

  6. Pellicer E, Varea A, Pané S, Nelson B J, Menéndez E, Estrader M, Suriñach S, Baró M D, Nogués J, and Sort J, Adv Funct Mater20 (2010) 983.

    Article  CAS  Google Scholar 

  7. Horch R A, Golden T D, D’Souza N A, and Riester L, Chem Mater14 (2002) 3531.

    Article  CAS  Google Scholar 

  8. Bakshi S R, Lahiri D, and Agarwal A, Int Mater Rev55 (2010) 41.

    Article  CAS  Google Scholar 

  9. Dai P Q, Zhang C, Wen J C, Rao H C, and Wang Q T, J Mater Eng Perform25 (2016) 594.

    Article  CAS  Google Scholar 

  10. Elmahdy M, Abouelmagd G, and Mazen A A, E Mater Res21 (2017) 1.

    Google Scholar 

  11. Dahlan D, Khatijah S, Usra A, Bajili A, and Ali A, Phys E Low-dimensional Syst Nanostructures91 (2017) 185.

    Article  CAS  Google Scholar 

  12. Peng Y, Hu Y, Han L, and Ren C Compos B Eng58 (2014) 473.

    Article  CAS  Google Scholar 

  13. Ritasalo R, Liu X W, Söderberg O, Keski-honkola A, and Pitkänen V, Procedia Eng10 (2011) 124.

    Article  CAS  Google Scholar 

  14. Alizadeh M, and Safaei H, Appl Surf Sci456 (2018) 195.

    Article  CAS  Google Scholar 

  15. Thurber C R, Ahmad Y H, Sanders S F, Al-Shenawa A, D’Souza N, Mohamed A M A, and Golden T D, Curr Appl Phys16 (2016) 387.

    Article  Google Scholar 

  16. Szeptycka B, Gajewska-Midzialek A and Babul T, J Mater Eng Perform25 (2016) 3134.

    Article  CAS  Google Scholar 

  17. Yasin G, Khan M A, Arif M, Shakeel M, Hassan T M, Khan W Q, Korai R M, Abbas Z, and Zuo Y, J Alloys Compd755 (2018) 79.

    Article  CAS  Google Scholar 

  18. Mai Y J, Zhou M P, Ling H J, Chen F X, Lian W Q and Jie X H, Appl Surf Sci433 (2018) 232.

    Article  CAS  Google Scholar 

  19. Guglielmi N, J Electrochem Soc119 (1972) 1009.

    Article  CAS  Google Scholar 

  20. Waware U S, Hamouda A M S, Bajaj B, Borkar T and Pradhan A K, J Alloys Compd769 (2018) 353.

    Article  CAS  Google Scholar 

  21. Celis J P, Roos J, and Buelens C, J Electrochem Soc134 (1987) 1402.

    Article  CAS  Google Scholar 

  22. Patterson A L, Phys Rev56 (1939) 978.

    Article  CAS  Google Scholar 

  23. Boubatra M, Azizi A, Schmerber G, and Dinia A, J Mater Sci Mater Electron22 (2011) 1804.

    Article  CAS  Google Scholar 

  24. Chen J, Li J, Xiong D, He Y, Ji Y, and Qin Y, Appl Surf Sci361 (2016) 49.

    Article  CAS  Google Scholar 

  25. Colin S, Beche E, Berjoan R, Jolibois H and Chambaudet A, Corros Sci41 (1999) 1051.

    Article  CAS  Google Scholar 

  26. Metikoš-Huković M, Škugor I, Grubač Z, and Babić R, Electrochim Acta55 (2010) 3123.

    Article  Google Scholar 

  27. Milošev I, and Metikoš-Huković M, Electrochim Acta42 (1997) 1537.

    Article  Google Scholar 

  28. Thurber C R, Ahmad Y H, Calhoun M C, Al-Shenawa A, D’Souza N, Mohamed A M A, and Golden T D, Int J Corros2018 (2018) 1.

    Article  Google Scholar 

  29. Ma A L, Jiang S L, Zheng Y G, and Ke W, Corros Sci91 (2015) 245.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Birla Institute of Technology & Science (BITS), Pilani Campus, Rajasthan, India for the technical support during SEM characterization. Authors are thankful to Ms. Neelakshi Sharma and Prof. Anshuman Dalvi of BITS, Pilani for their help in XRD analysis. The authors are thankful to Dr. Girish Kant from Mechanical Department, BITS, Pilani for his support in tribological analysis. The authors are thankful to Dr. Surojit Pande from Chemistry Department, BITS, Pilani for his support in corrosion study. The authors express their sincere thanks to Material Research Centre, MNIT, Jaipur for the support in microhardness testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay D. Pingale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pingale, A.D., Belgamwar, S.U. & Rathore, J.S. Effect of Graphene Nanoplatelets Addition on the Mechanical, Tribological and Corrosion Properties of Cu–Ni/Gr Nanocomposite Coatings by Electro-co-deposition Method. Trans Indian Inst Met 73, 99–107 (2020). https://doi.org/10.1007/s12666-019-01807-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01807-9

Keywords

Navigation