Skip to main content
Log in

Single Crystal Growth via Solid → Solid Transformation of Glass

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Fabrication of single crystals of materials by conventional methods, which decompose or undergo incongruent melting upon melting, has limited the development of advanced technologies. A solution to this challenge was demonstrated a few years ago using laser heating in a localized region to minimize undesirable nucleation, and then scanning the beam to obtain single crystal growth at the crystallization temperature of glass that was usually significantly below its melting temperature. An overview of the development of this new mode of crystal growth including some new results and insights is presented here. The discovery of rotating lattice single crystal as a novel form of meta-material and its characteristics in relation to process parameters are discussed in detail. Preliminary observations suggest strong correlation between the shape of growth front and rate of lattice rotation. Finally, challenges to single crystal growth via solid → solid transformation are exposed, which include the high interfacial stresses from density difference and the thermal expansion mismatch, of extremely steep T gradients due to highly localized (~μm) laser heating, and of the preferential diffusion of certain elements in the case of incongruent crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. National Research Council, Frontiers in Crystalline Matter: from Discovery to Technology, National Academies Press, Washington, DC (2009). ISBN 978-0-309-13800-0.

  2. Richter T M M, and Niewa R, Inorganics 2 (2014) 29.

    Article  Google Scholar 

  3. Savytskii D, Knorr B, Dierolf V, and Jain H, Sci Rep 6 (2016) 23324. https://doi.org/10.1038/srep23324.

    Article  Google Scholar 

  4. Varshneya A K, Fundamentals of Inorganic Glasses, vol 3, Academic Press, Cambridge (1994).

  5. Biegelsen D K, Johnson N M, Bartelink D J, Moyer M D, Gibbons J F, Hess L D, and Sigmon T W, in Laser and Electron-Beam Solid Interactions and Materials Processing, (eds) Gibbons J F, Hess L D, and Sigmon T W, Elsevier, Amsterdam (1981), p 487.

  6. Honma T, Benino Y, Fujiwara T, Komatsu T, and Sato R, Appl Phys Lett 82 (2003) 892.

    Article  Google Scholar 

  7. McAnany S D, Veenhuizen K J, Nolan D A, Aitken B G, Dierolf V, and Jain H, Cryst Growth Des (in press).

  8. Scott C E, Strok J M, and Levinson L M, US Patent 5,549,746 27 Aug 1996.

  9. Kang S J L, Park J H, Ko S Y, and Lee H Y, J Am Ceram Soc 98 (2015) 347.

    Article  Google Scholar 

  10. Cullis A G, Rep Prog Phys 48 (1985) 1155.

    Article  Google Scholar 

  11. Stone A, Sakakura M, Shimotsuma Y, Stone G, Gupta P, Miura K, Hirao K, Dierolf V, and Jain H, Opt Exp 17 (2009) 23284.

    Article  Google Scholar 

  12. Savytskii D, Sanders M, Golovchak R, Knorr B, Dierolf V, and Jain H, J Am Ceram Soc 97 (2014) 198.

    Article  Google Scholar 

  13. Savytskii D, Atwater K, Dierolf V, and Jain H, J Am Ceram Soc 97 (2014) 3458.

    Article  Google Scholar 

  14. Savytskii D, Jain H, Tamura N, and Dierolf V, Sci Rep 6 (2016) 36449. https://doi.org/10.1038/srep36449.

    Article  Google Scholar 

  15. Meyers M A, McKittrick J, and Chen P Y, Science 339 (2013) 773.

    Article  Google Scholar 

  16. Bagmut A G, Grigorov S N, Kosevich V M, Lyubchenko E A, Nikolaychuk G P, Samoylenko D N, Yavetskiy R P, Balazyuk V N, Eremenko A I, Raransky N D, and Lopin A V, Funct Mater 15 (2008) 332.

    Google Scholar 

  17. Barabash R I, Ice G E, Larson B C, and Yang, W, Rev Sci Instrum 73 (2002) 1652.

    Article  Google Scholar 

  18. Korsunsky A M, Hofmann F, Abbey B, Song X, Belnoue J P, Mocuta C, and Dolbnya I, Int J Fatigue 42 (2012) 1.

    Article  Google Scholar 

  19. Yang J, Liu Y, Lin H-M, and Chen C-C, Adv Mater 16 (2004) 713.

    Article  Google Scholar 

  20. Palache C, Berman H, and Frondel C, The System of Mineralogy, Willey, New York, edition 7, vol 1 (1944) p 270.

    Google Scholar 

  21. Bayliss P, and Nowacki W, Z Kristallogr 135 (1972) 308.

    Article  Google Scholar 

  22. Scavnicar S, Z Kristallogr 114 (1960) 85.

    Article  Google Scholar 

  23. Savytskii D, Dierolf V, and Jain H, Unpublished.

  24. Honma T, and Komatsu T, Opt Express 18 (2010) 8019.

    Article  Google Scholar 

  25. Savytskii D, Jain H, Au-Yeung C, Dierolf V, and Tamura N, J Cryst Growth Des 17 (2017) 1735. http://dx.doi.org/10.1021/acs.cgd.6b01709.

    Article  Google Scholar 

  26. Stadler B J, and Mizumoto T, IEEE Photon J 6 (2014) 9.

    Article  Google Scholar 

  27. Block A D, Dulal P, Stadler B J, and Seaton N C, IEEE Photon J 6 (2014) 1.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Basic Energy Sciences Division, Department of Energy (Project DE-SC0005010). The authors thank Nobumichi Tamura for his help with the X-ray micro-diffraction studies over the years at Lawrence Berkeley National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu Jain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, H., Savytskii, D. & Dierolf, V. Single Crystal Growth via Solid → Solid Transformation of Glass. Trans Indian Inst Met 72, 1971–1979 (2019). https://doi.org/10.1007/s12666-019-01737-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01737-6

Keywords

Navigation