Skip to main content
Log in

Fluidity and Hot Cracking Susceptibility of A356 Alloys with Sc Additions

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A356 with scandium (Sc) addition provides interesting results beyond costs. For the practical use of Sc, the effects of Sc on castability must be considered. Fluidity and hot cracking are important factors defining the castability of aluminum casting alloys. In the present work, the influence of Sc addition on the castability of A356 hypoeutectic Al–Si alloy was investigated, which was evaluated through fluidity and hot cracking susceptibility. The fluidity of the alloys was studied by measuring the total volume of solidified aluminum in a multi-channel mold. The hot cracking susceptibility of the alloys was evaluated by using a constrained-rod casting mold test. The results of the fluidity and hot cracking susceptibility test were supported by microstructural analysis. The results indicate that 0.2 wt% Sc addition significantly increases the fluidity of A356 alloy, due to the grain refinement and eutectic Si modification by changing the solidification mode. However, the fluidity slightly decreases when the Sc content increases to 0.4 wt% due to the formation of primary Al2Si2Sc intermetallic phase. The hot cracking of A356 alloy was completely diminished when Sc was added to the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Reproduced with permission from Pandee et al. [40]

Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Arnberg L, and Mo A, Castability-Fluidity and Hot Tearing, Metals Handbook, ASM (2008), p 375.

    Google Scholar 

  2. Flemings M C, Solidification Processing, Wiley Online Library (1974).

  3. Davidson C, Viano D, Lu L, and StJohn D, Int J Cast Met Res 19 (2006) 59.

    Article  Google Scholar 

  4. Eskin D, and Katgerman L, Metall Mater Trans A 38 (2007) 1511.

    Article  Google Scholar 

  5. Ravi K R, Pillai R M, Amaranathan K R, Pai B C, and Chakraborty M, J Alloys Compd 456 (2008) 201.

    Article  Google Scholar 

  6. Kwon Y-D, and Lee Z-H, Mater Sci Eng A 360 (2003) 372.

    Article  Google Scholar 

  7. Dahle A K, Tøndel P A, Paradies C J, and Arnberg L, Metall Mater Trans A 27 (1996) 2305.

    Article  Google Scholar 

  8. Loper C Jr, AFS Trans 47 (1992) 533.

    Google Scholar 

  9. Mollard F, Flemings M, and Niyama E, AFS Trans 95 (1987) 647.

    Google Scholar 

  10. Kotte B, Modern Cast. 75 (1985) 33.

    Google Scholar 

  11. Pan E, and Hu J, Trans Am Foundrym Soc 105 (1997) 413.

    Google Scholar 

  12. Argo D, and Gruzleski J, Int J Cast Met Res 2 (1989) 109.

    Article  Google Scholar 

  13. Easton M, Wang H, Grandfield J, St John D, and E. Sweet, Mater Forum 28 (2004) 224.

    Google Scholar 

  14. Rosenberg R, Flemings M, and Taylor H, Trans Am Foundrym Soc 68 (1960) 518.

    Google Scholar 

  15. Warrington D, and McCartney D, Int J Cast Met Res 3 (1990) 202.

    Article  Google Scholar 

  16. Gruzleski J, and Closset B, The Treatment of Liquid Aluminum-Silicon Alloy, American Foundrymen’s Society, Inc. (1990).

  17. Robles-Hernandez F C, Ramírez J M H, and Mackay R, AlSi Alloys: Automotive, Aeronautical, and Aerospace Applications, Springer (2017).

  18. Patakham U, Kajornchaiyakul J, and Limmaneevichitr C, J Alloys Compd 542 (2012) 177.

    Article  Google Scholar 

  19. Xu C, Xiao W, Hanada S, Yamagata H, and Ma C, Mater Charact 110 (2015) 160.

    Article  Google Scholar 

  20. Muhammad A, Xu C, Xuejiao W, Hanada S, Yamagata H, Hao L, and M. Chaoli, Mater Sci Eng A 604 (2014) 122.

    Article  Google Scholar 

  21. Pandee P, Gourlay C M, Belyakov S A, Patakham U, Zeng G, and Limmaneevichitr C, J. Alloys Compd 731 (2018) 1159.

    Article  Google Scholar 

  22. Patakham U, Kajornchaiyakul J, and Limmaneevichitr C, J Alloys Compd 575 (2013) 273.

    Article  Google Scholar 

  23. Prukkanon W, Srisukhumbowornchai N, and Limmaneevichitr C, J Alloys Compd 477 (2009) 454.

    Article  Google Scholar 

  24. Patakham U, and Limmaneevichitr C, J Alloys Compd 616 (2014) 198.

    Article  Google Scholar 

  25. Puparattanapong K, and Limmaneevichitr C, Trans Indian Inst Met 69 (2016) 1587.

    Article  Google Scholar 

  26. Prukkanon W, Srisukhumbowornchai N, and Limmaneevichitr C, J Alloys Compd 487 (2009) 453.

    Article  Google Scholar 

  27. Di Sabatino M, Shankar S, Apelian D, and Arnberg L, Influence of Temperature and Alloying Elements on Fluidity of AlSi Alloys, in TMS Shape Casting - The John Campbell Symposium (2005), p 193.

  28. Çolak M, Kayikci R, and Dispinar D, Trans Indian Inst Met 68 (2015) 275.

    Article  Google Scholar 

  29. Pekguleryuz M, Labelle P, Argo D, and Baril E, Magnesium Diecasting Alloy AJ 62 X with Superior Creep Resistance, Ductility and Diecastability, in Magnesium Technology 2003 as held at the 2003 TMS Annual Meeting (2003), p 201.

  30. Cao G, and Kou S, Mater Sci Eng A 417 (2006) 230.

    Article  Google Scholar 

  31. Toropova L S, Eskin D G, Kharakterova M L, and Dobatkina T V, Advance Aluminum Alloys containing Scandium: Structure and Properties, Gordon and Breach Science, Amsterdam (1998).

    Google Scholar 

  32. Rokhlin L L, Bochvar N R, Rybal’chenko O V, Tarytina I E, and Sukhanov A V, Russ Metall 2012 (2012) 606.

    Article  Google Scholar 

  33. Tyvanchuk A T, Yanson T I, and Kotur B, Russ Metall 20 (1988) 190.

    Google Scholar 

  34. Backerud L, Chai G, and Tamminen J, Solidification Characteristics of Aluminum Alloys. Vol. 2., Foundry alloys, American Foundrymen’s Society, Inc. (1990) p 266.

  35. Malekan M, and Shabestari S, Metall Mater Trans A 40 (2009) 3196.

    Article  Google Scholar 

  36. Schumacher P, Greer A L, Worth J, Evans P V, Kearns M A, Fisher P, and Green A H, Mater Sci Technol 14 (1998) 394.

    Article  Google Scholar 

  37. Greer A L, Bunn A M, Tronche A, Evans P V, and Bristow D J, Acta Mater 48 (2000) 2823.

    Article  Google Scholar 

  38. Dahle A, Arnberg L, and Apelian D, Trans Am Foundrym Soc 105 (1997) 963.

    Google Scholar 

  39. Venkateswaran S, Mallya R, and Seshadri M, Trans Am Foundrym Soc 94 (1986) 701.

    Google Scholar 

  40. Pandee P, Gourlay C M, Belyakov S A, Ozaki R, Yasuda H, and Limmaneevichitr C, Metall Mater Trans A 45 (2014) 4549.

    Article  Google Scholar 

  41. Di Sabatino M, and Arnberg L, Trans Indian Inst Met 62 (2009) 321.

    Article  Google Scholar 

  42. Ram G J, Mitra T, Shankar V, and Sundaresan S, J Mater Process Technol 142 (2003) 174.

    Article  Google Scholar 

  43. Nabawy A M, Samuel A M, Samuel F H, and Doty H W, J Mater Sci 47 (2012) 4146.

    Article  Google Scholar 

  44. Knuutinen A, Nogita K, McDonald S D, and Dahle A K, J Light Met 1 (2001) 241.

    Article  Google Scholar 

  45. Nogita K, Knuutinen A, McDonald S D, and Dahle A K, J. Light Met 1 (2001) 219.

    Article  Google Scholar 

  46. Li S, Sadayappan K, and Apelian D, Metall Mater Trans B 47 (2016) 2979.

    Article  Google Scholar 

  47. Huang H, Fu P-h, Wang Y-x, Peng L-m, and Jiang H-y, Trans Nonferrous Met Soc China 24 (2014) 922.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the National Research University Project of Thailand’s Office of the Higher Education Commission, the King Mongkut’s University of Technology Thonburi through the “KMUTT 55th Anniversary Commemorative Fund,” and the Royal Thai Government Scholarship (Ministry of Science and Technology) for Mr. Kongkiat Puparattanapong for his Ph.D. study is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Limmaneevichitr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puparattanapong, K., Pandee, P., Boontein, S. et al. Fluidity and Hot Cracking Susceptibility of A356 Alloys with Sc Additions. Trans Indian Inst Met 71, 1583–1593 (2018). https://doi.org/10.1007/s12666-018-1293-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1293-0

Keywords

Navigation