Skip to main content
Log in

Experimental Validation of a Numerical Method that Predicts the Size of the Heat Affected Zone. Optimization of the Welding Parameters by the Taguchi’s Method

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This work outlines the experimental validation of a numerical method which determines the size of the heat affected zone (HAZ) in a low carbon steel plate using the gas metal arc welding technique. The welding parameters match between the experimental and numerical simulations. The later allows the calculation of the weld beads and temperature fields from which the size of the HAZ can be inferred. This size from numerical simulations compares quite well with the experimentally measured HAZ from the metal grain macrostructure. A relationship between the bead size and the thermal energy source parameters, defined by the Goldak’s double ellipsoid, is found. Finally, the size of the HAZ is optimized by Taguchi’s method, which make use of the signal-to-noise ratio and the analysis of variance to obtain the influence of the parameters on the size of HAZ. The numerical code can be used for other electric arc welding techniques as GTAW or FCAW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ah, ch :

Ellipsoidal semi-axes (mm)

B:

Width of the low carbon steel to be simulated (m)

Cp :

Caloric capacity (J kg−1 K−1)

D:

Thickness of the low carbon steel plate to be simulated (m)

K:

Fourier conductivity (J m−1 s−1 K−1)

L:

Length of the low carbon steel plate to be simulated (m)

n:

Number of trials

P:

Power of the electric arc (W)

p value:

Is the probability of obtaining a test statistic result

To :

Initial temperature (ºC)

Tf :

Fusion temperature (ºC)

ua, uc :

Ellipsoidal non dimension heat source parameters

v s :

Welding speed (m/s)

Yij :

The measured value of quality characteristics

α:

Thermal diffusivity (m2/s)

ΔH:

Phase change enthalpy (J kg−1)

Δx:

Longitudinal direction to the movement (m)

Δy:

Perpendicular direction to the movement (m)

ρ:

Density (kg m−3)

ANOVA:

Variance analysis

EBW:

Electron beam welding

FCAW:

Flux cored arc welding

FSW:

Friction stir welding

GMAW:

Gas metal arc welding

GTAW:

Gas tungsten arc welding

HAZ:

Heat affected zone

Nd-Yag:

Neodymium-doped yttrium aluminium garnet

SAW:

Submerged arc welding

SMAW:

Shield metal arc welding

S/N:

Signal to noise ratio

TIG:

Tungsten inert gas

i, j :

Subscripts of finite differences equations

i th , j th :

Trials

References

  1. Boumerzoug Z, Raouache E, and Delaunois F, Mater Sci Eng 0 (2011) 530.

    Google Scholar 

  2. Wang Y, Wang L, Di X, Shi Y, Bao X, and Gao X, Comput Mater Sci 0 (2013) 68.

    Google Scholar 

  3. Kumar R, Tewari V K, and Prakash S, J Alloys Compd 12 (2009) 479.

    Google Scholar 

  4. Zhang Z Z, and Wu C S, Comput Mater Sci 0 (2012) 65.

    Google Scholar 

  5. Zhang M, Nie Y, Wang Q, and Chen H, Guangzhou (2013), p 415.

  6. Hamad F, Collins L, and Volkers R, in Proceedings of the Symposium 7th International Pipeline Conference, American Society of Mechanical Engineers, Calgary (2009), p 553.

  7. Gunaraj V, and Murugan N, Weld J 1 (2002) 81.

    Google Scholar 

  8. Cho M H, Lim Y C, and Farson D F, Weld J 12 (2006) 85.

    Google Scholar 

  9. Li M-Y, and Kannatey-Asibu J-E, Weld J 3 (2002) 81.

    Article  Google Scholar 

  10. Okui N, Ketron D, Bordelon F, Hirata Y, and G. Clark, Weld J 2 (2007) 86.

    Google Scholar 

  11. Murugan N, and Parmar R S, J Mater Process Technol 4 (1994) 41.

    Google Scholar 

  12. Raveendra J, and Parmaris R, Met Constr 1 (1987) 19.

    Google Scholar 

  13. Koleva E, Vacuum 2 (2001) 62.

    Google Scholar 

  14. Gunaraj V, and Murugan N, Weld J N.Y. 3 (2002) 81.

  15. Ranjbarnodeh E, Weis S, Hanke S, and Fischer A, J Min Met Sect B 1 (2012) 48.

    Google Scholar 

  16. Vitek J, Iskander Y, Oblow E, Babu S, David S, Fuerschbach P, Smartt H, and Pace D, Neural Network Modeling of Pulsed-Laser Weld Pool Shapes in Aluminum Alloy Welds, Report ORNL/CP–98605, Oak Ridge National Lab., Oak Ridge, (1998).

    Book  Google Scholar 

  17. Uzun H, Donne C D, Argagnotto A, Ghidini T, and Gambaro C, Mater Des 1 (2005) 26.

    Google Scholar 

  18. Benyounis K Y, and Olabi A G, Adv Eng Softw 6 (2008) 39.

    Google Scholar 

  19. Roy R K, Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement, Wiley Interscience, Hoboken (2001).

  20. Meseguer-Valdenebro J L, Martínez-Conesa E J, Eguía V M, and Paya M V, Therm Sci 11 (2014)18.

    Google Scholar 

  21. Allen T T, Richardson R W, Tagliabue D P, and Maul G P, Weld J 5 (2002) 81.

    Google Scholar 

  22. Vrouwenvelder T, Leira B J, and Sykora M, Struct Eng Int 1 (2012) 22.

    Google Scholar 

  23. Suarez J C, Carrillo E, and Molleda F, Rev Sold 2 (1991) 21.

    Google Scholar 

  24. Eagar T W, and Tsai N -S, Weld J 12 (1983) 62.

    Google Scholar 

  25. Christensen N, de Davies V, and Gjermundsen K, Br Weld J 2 (1965) 12.

    Google Scholar 

  26. CEN Technical Committee, Eurocode 3: Design of Steel Structures. Part 1-2. General Rules-Structural Fire Design (1995).

  27. DuPont J, and Marder A, Weld J Weld Res Suppl 12 (1995) 74.

  28. Cho M H, Lim Y C, and Farson D F, Weld J 12 (2006) 85.

    Google Scholar 

  29. Nguyen N T, Mai Y W, Simpson S, and Ohta A, Weld J 3 (2004) 83.

    Google Scholar 

  30. Fachinotti V D, Amilcar Anca A, and Cardona A, Int J Numer Methods Biomed Eng 4 (2011) 27.

    Google Scholar 

  31. Goldak J, Chakravarti A, and Bibby M, Met Trans B 2 (1984) 15.

    Google Scholar 

  32. Estrems Amestoy M, Miguel-Eguía V, and Martínez-Conesa E J, Dyna 9 (2009) 84.

    Google Scholar 

  33. Kim Y S, and Eagar T W, Weld J 4 (1993) 72.

    Google Scholar 

  34. Pawłowski B, J Achiev Mater Manuf Eng 2 (2011) 49.

    Google Scholar 

  35. Chipman J, Met Trans 1 (1972) 3.

    Google Scholar 

  36. Haragopal G, Reddy P V R R, Reddy G C M, and Subrahmanyam J V, J Sci Ind Res 10 (2011) 70.

    Google Scholar 

  37. Bozkurt Y, Mater Des 0 (2012) 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Meseguer-Valdenebro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meseguer-Valdenebro, J.L., Serna, J., Portoles, A. et al. Experimental Validation of a Numerical Method that Predicts the Size of the Heat Affected Zone. Optimization of the Welding Parameters by the Taguchi’s Method. Trans Indian Inst Met 69, 783–791 (2016). https://doi.org/10.1007/s12666-015-0554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0554-4

Keywords

Navigation