Skip to main content
Log in

High Temperature Erosion Performance of Nanostructured and Conventional TiAlN Coatings on AISI-304 Boiler Steel Substrate

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

According to modern design philosophy better overall performance can be obtained with the modification of the surface structure and their properties without damaging underlying bulk material or substrate. The surface engineering can be classified in two broad classes: surface modification and surface coating. In the present research TiAlN coating was deposited on AISI-304 grade boiler steel using three different techniques, out of which two were thin nano coatings deposited at different temperatures of 500 and 200 °C developed by Oerlikon Balzers rapid coating system machine under a reactive nitrogen atmosphere. One conventional coating of TiAlN was deposited by plasma spraying method. The coated samples were characterized relative to their coating thickness, microhardness, porosity and micro structure. The optical microscopy, the X-ray diffraction analysis and field emission scanning electron microscope (FESEM with EDAX attachment) analysis have been used to identify various phases formed after coating deposition on the surface of AISI-304 grade boiler steel. The erosion studies were conducted on uncoated as well as coated specimens in simulated coal fired boiler environment using an air jet erosion test rig at various impingement angles of 30°, 60° and 90°. The alumina particles of average size of 50 µm were used as erodent at a velocity of 35 m/s. The eroded samples were analysed with SEM/EDAX and optical profilometer. The main objective of this research work was to increase the life of boiler tubes by using nanostructured and conventional TiAlN coatings and at the same time to compare the performance of coatings with respect to bare AISI-304 grade boiler steel. The nanostructured TiAlN coatings has shown minimum erosion rate as compared to conventional TiAlN coating and uncoated AISI-304 grade boiler steel. Maximum erosion was observed at an angle of 30° as compared to 60° and 90° indicative ductile behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kosel T H, Lubrication and Wear Technology. ASM Handbook, Vol. 18, ASM International, Materials Park (1992), p 199.

  2. Zhang Y, Cheng Y B S, and Lathabai S, Wear 240 (2000) 40.

    Article  Google Scholar 

  3. Wood R J K, Mater Des 20 (1999) 179.

    Article  Google Scholar 

  4. Getu H, Spelt J K, and Papini M, Wear 292–293 (2012) 159.

    Article  Google Scholar 

  5. Shimizu K, Xinba Y, and Araya S, Wear 271 (2011) 1357.

    Article  Google Scholar 

  6. Wang X, Fang M, Zhag L, Ding H, Liu Y, and Yang J, Mater Chem Phys 139 (2013) 765.

    Article  Google Scholar 

  7. Laguna-Camacho J R, Marquina-Charvez A, Mandez-Mandez J V, Vite-Torres M, and Gallardo-Hernandez E A, Wear 301 (2013) 398.

    Article  Google Scholar 

  8. Wang B Q, Geng G Q, and Levy A V, Surf Coat Technol 54–55 (1992) 529.

    Article  Google Scholar 

  9. Ramesh M R, Prakash S, Nath S K Sapra P K, and Vanktaraman B, Wear 269 (2010) 197.

    Article  Google Scholar 

  10. Turunen E, Varis T, Gustafsson T E, Keskinen J, Falt T, and Hannula S-P, Surf Coat Technol 200 (2006), 4987.

    Article  Google Scholar 

  11. Ding C, Chen H, Liu X, and Zeng Y, in Thermal Spray 2003. Advancing the Science and Applying the Technology, (eds) Moreau C, and Marple B, ASM International, Materials Park (2003), p 455.

    Google Scholar 

  12. Leblanc L, in Thermal Spray 2003. Advancing the Science and Applying the Technology, (eds) Moreau C, and Marple B, ASM International, Materials Park (2003), p 291.

    Google Scholar 

  13. Luo H, Goberman D, Shaw L, and Gell M, Mater Sci Eng A 346 (2003) 237.

    Article  Google Scholar 

  14. Chawla V, Sidhu B S, Puri D, and Prakash S, J Aust Ceram Soc 44 (2008) 56.

    Google Scholar 

  15. Fedrizzi L, Rossi S, Cristel R, and Bonora P L, Electrochimica Acta 49 (2004) 2803.

  16. Chawla V, Puri D, Prakash S, Chawla A, and Sidhu B S, J Miner Mater Charact Eng 8 (2009) 715.

    Google Scholar 

  17. Alegria-Ortega J A, Ocampo-Carmona L M, Suarez-Bustamante F A, and Olaya-Florez J J, Wear 290–291 (2012) 149.

    Article  Google Scholar 

  18. Yang Q, Seo D Y, Zhao L R, and Zeng X T, Surf Coat Technol 188–189 (2004) 168.

    Article  Google Scholar 

  19. Yang Q, Zhao L R, Cai F, Yang S, and Teer D G, Surf Coat Technol 202 (2008) 3886.

    Article  Google Scholar 

  20. Hocking M G, Surf Coat Technol 62 (1993) 460.

    Article  Google Scholar 

  21. Hearley J A, Little J A, and Sturgeon A J, Wear 233–235 (1999) 328.

    Article  Google Scholar 

  22. Adachi S, and Nakata K, Surf Coat Technol 201 (2007) 5617.

    Article  Google Scholar 

  23. Chen H, and Hutchings I M, Surf Coat Technol 107 (1998) 106.

    Article  Google Scholar 

  24. Vuoristo P, Niemi K, Makela A, and Mantyla T, in Proc 7th National Thermal Spray Conference, Boston, Massachusetts (1994), p 121.

  25. Westergard R, Erickson L C, Axen N, Hawthorne H M, and Hogmark S, Tribol Int 31 (1998) 271.

    Article  Google Scholar 

  26. Sidhu B S, Puri D, and Prakash S, Mater Sci Eng A368 (2004) 149.

    Article  Google Scholar 

  27. Hidalgo V H, Varela J B, Menendez A C, and Martinez S P, Wear 247 (2001) 214.

    Article  Google Scholar 

  28. Pei Y T, Galvan D, De Hosson J Th M, and Cavaleiro A, Surf Coat Technol 198 (2005) 44.

    Article  Google Scholar 

  29. Yoo Y H, Le D P, Kim J G, Kim S K, and Vinh P V, Thin Solid Films 516 (2008) 3544.

    Article  Google Scholar 

  30. Falub C V, Karimi A, Ante M, and Kalss W, Surf Coat Technol 201 (2007) 5891.

    Article  Google Scholar 

  31. Man B Y, Guzman L, Miotello A, and Adami M, Surf Coat Technol 180–181 (2004) 9.

    Article  Google Scholar 

  32. Braic M, Balaceanu M, Braic V, Vladescu A, Pavelescu G, and Albulescu M, Surf Coat Technol 200 (2005)1014.

    Article  Google Scholar 

  33. Grzesik W, Zalisz Z, Krol S, and Nielslony P, Wear 261 (2006) 1191.

    Article  Google Scholar 

  34. Alberdi A, Marin M, Diaz B, Sanchez O, and Galindo R, Vacuum 81 (2007) 1453.

    Article  Google Scholar 

  35. Lackner J M, Waldhauser W, Ebner R, Keckes J, and Schoberl T, Surf Coat Technol 177–178 (2004) 447.

    Article  Google Scholar 

  36. Ohnuma H, Nihira N, Mitsuo A, Toyoda K, Kubota K, and Aiziwa T, Surf Coat Technol 177–178 (2004) 623.

    Article  Google Scholar 

  37. Leyendecker T, Lemmer O, Esser S, and Ebberink J, Surf Coat Technol 48 (1991) 175.

    Article  Google Scholar 

  38. Bhushan, B, and Gupta B K, Handbook of Tribology: Material Coatings and Surface Treatments, McGraw-Hill, New York (1991).

    Google Scholar 

  39. Murthy J K N, Rao D S, and Venkataraman B, Wear 249 (2001) 592.

  40. Finnie I, Wear 3 (1960) 87.

    Article  Google Scholar 

  41. Finnie I, Wolak J, and Kabil Y, J Mater 2 (1967) 682.

    Google Scholar 

  42. Finnie I, Wear 19 (1972) 81.

    Article  Google Scholar 

  43. Shimizu K, and Noguchi T, Wear 176 (1994) 255.

    Article  Google Scholar 

  44. Oka Y I, Ohnogi H, Hosohawa T, and Matsumura M, Wear 203–204 (1997) 573.

    Article  Google Scholar 

  45. Wellman R G, and Allen C, Wear 186–187 (1995) 117.

    Article  Google Scholar 

  46. Tabakoff W, and Vittal B V R, Wear 86 (1983) 89.

    Article  Google Scholar 

  47. Hutchings I M, Tribology: Friction and Wear of Engineering Materials, Metallurgy and Material Science Series, Edward Arnold Publications, London (1992).

    Google Scholar 

  48. Sundararajan T, and Roy M, Tribol Int 30 (1997) 339.

    Article  Google Scholar 

  49. Mann B S, and Arya V, Wear 249 (2001) 354.

    Article  Google Scholar 

  50. Stack M M, Stott F H, and Wood G C, Wear 162–164 (1993) 706.

    Article  Google Scholar 

  51. Stack M M, Purandare Y, and Hovsepian P, Surf Coat Technol 188–189 (2004) 556.

    Article  Google Scholar 

  52. Mishra S B, Chandra K, Prakash S, and Venkataraman B, Surf Coat Technol 201 (2006) 1477.

    Article  Google Scholar 

  53. Raask E, Erosion Wear in Coal Utilization, Hemisphere, Washington, DC (1988).

    Google Scholar 

  54. Stridh B, Hedenqvist P, Olsson M, and Soderberg S, in Proc 7th International Conference on Erosion by Liquid and Solid Impact, Cavendish Laboratory, Cambridge (1987), paper 19.

  55. Levy A V, and Wang B Q, Wear 121 (1988) 325.

    Article  Google Scholar 

  56. Sidhu H S, Sidhu B S, and Prakash S, Surf Coat Technol 202 (2007) 232.

    Article  Google Scholar 

  57. Bellman R Jr, and Levy A, Wear 70 (1981) 1.

    Article  Google Scholar 

  58. Wang B Q, and Verstak A, Wear 233–235 (1999) 342.

    Article  Google Scholar 

  59. Wang B Q, and Shui Z R, Wear 253 (2002) 550.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmaninder Singh Grewal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grewal, J.S., Sidhu, B.S. & Prakash, S. High Temperature Erosion Performance of Nanostructured and Conventional TiAlN Coatings on AISI-304 Boiler Steel Substrate. Trans Indian Inst Met 67, 889–902 (2014). https://doi.org/10.1007/s12666-014-0413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0413-8

Keywords

Navigation