Skip to main content
Log in

Fabrication of Nano/Ultra-Fine Grained IF Steel via SPD Processes: a Review

  • Review Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The grain size of polycrystalline materials plays a major role in dictating many critical properties including the strength and resistance to plastic flow. Nano/ultra-fine grained steels have the potential to exhibit outstanding physical, mechanical and chemical properties, which could, in principle, lead to new applications and novel technologies. Interstitial free (IF) steels in the coarse-grained condition possesses high ductility but low yield strength due to the decrease in the solid solution hardening effect of the interstitial atoms. Enhancing the strength with adequate ductility may increase the potential applications of IF steel sheets in new applications like those in aviation or defense industries. In fact, the overall trend in the development of IF steels are towards the high strength variety that will allow weight saving through down gauging. Considering the monophase microstructure of IF steel, strengthening methods to enhance its mechanical properties are limited and grain refinement seems to be the most feasible method. The most attractive method for the production of nano/ultra-fine grained IF steel is severe plastic deformation (SPD) processes. Therefore, this review is concerned with the production of nano/ultra-fine IF steel by using SPD methods such as accumulative roll bonding and equal channel angular pressing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Gleiter H, Progr Mater Sci 33 (1989) 223.

    Google Scholar 

  2. Viswanathan V, Laha T, Balani K, Agarwal A, and Seal S, Mater Sci Eng R 54 (2006) 121.

    Google Scholar 

  3. Zhilyaev A P, and Langdon T G, Progr Mater Sci 53 (2008) 893.

    Google Scholar 

  4. Valiev R Z, and Langdon T G, Progr Mater Sci 51 (2006) 881.

    Google Scholar 

  5. Pande C S, and Cooper K P, Progr Mater Sci 54 (2009) 689.

    Google Scholar 

  6. Roco M C, Williams R S and Alivisatos P, (eds) Nanotechnology research directions. Kluwer, Dordrecht (2000).

    Google Scholar 

  7. Chow G M, Ovidko I A and Tsakalakos T (eds), Nanostructured films and coatings. NATO science series. Kluwer, Dordrecht (2000).

    Google Scholar 

  8. Gleiter H, Acta Materialia 48 (2000) 1.

    Google Scholar 

  9. Komarneni S, Vaja R A, Lu G Q, Matsushita J I, and Parker J C (eds) Nanophase and nanocomposite materials IV. in MRS Symposium Proceedings. MRS, Warrendale (2003), vol 703.

  10. Berndt C C, Fischer T, Ovidko I A, Skandan G, and Tsakalakos T (eds), Nanomaterials for structural applications. MRS Symposium Proceedings. MRS, Warrendale (2003), vol 740.

  11. Valiev R Z, Islamgaliev R K, and Alexandrov I V, Progr Mater Sci 45 (2000) 103.

    Google Scholar 

  12. Zhu Y T, Liao X Z, and Wu X L, Progr Mater Sci 57 (2012) 1.

    Google Scholar 

  13. Ni S, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, and Zhu Y T, Mater Sci Eng A 528 (2011) 3398.

    Google Scholar 

  14. Ni S, Wang Y B, Liao X Z, Figueiredo R B, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, and Zhu Y T, Mater Sci Eng A 528 (2011) 4807.

    Google Scholar 

  15. Meyers M A, Mishra A, and Benson D J, Progr Mater Sci 51 (2006) 427.

    Google Scholar 

  16. Hassani F Z, and Ketabchi M, Mater Sci Eng A 528 (2011) 6426.

    Google Scholar 

  17. Choi H J, Shin J H, and Bae D H, Compos Sci Technol 71 (2011) 1699.

    Google Scholar 

  18. Dehghani K, Mater Sci Eng A 530 (2011) 618.

    Google Scholar 

  19. Zheng Z J, Gao Y, Gui Y, and Zhu M, Corros Sci 54 (2012) 60.

    Google Scholar 

  20. Zakerinia H, Kermanpur A, and Najafizadeh A, Mater Sci Eng A 528 (2011) 3562.

    Google Scholar 

  21. Maier V, Höppel H W, and Göken M, J Phys Conf Ser 240 (2010) 012108.

    Google Scholar 

  22. Nili Ahmadabadi M, Shirazi H, Ghasemi-Nanesa H, Hossein Nedjad S, Poorganji B, and Furuhara T, Mater Des 32 (2011) 3526.

    Google Scholar 

  23. Leiva D R, Floriano R, Huot J, Jorge A M, Bolfarini C, Kiminami C S, Ishikawa T T, and Botta W J, J Alloy Compd 509S (2011) S444.

    Google Scholar 

  24. Nurislamova G, Sauvage X, Murashkin M, Islamgaliev R, and Valiev R, Philos Mag Lett 88 (2008) 459.

    Google Scholar 

  25. Yang D K, Cizek P, Hodgson P D, and Wen C E, Acta Materialia 58 (2010) 4536.

    Google Scholar 

  26. Khodabakhshi F, Kazeminezhad M, and Kokabi A H, Mater Sci Eng A 527 (2010) 4043.

    Google Scholar 

  27. Hosseini S M, Najafizadeh A, and Kermanpur A, J Mater Process Technol 211 (2011) 230.

    Google Scholar 

  28. Pasebani S, Toroghinejad M R, Hosseini M, and Szpunar J, Mater Sci Eng A 527 (2010) 2050.

    Google Scholar 

  29. Lua K, and Hansen N, Scripta Materialia 60 (2009) 1033.

    Google Scholar 

  30. Koch C C, Scripta Materialia 49 (2003) 657.

    Google Scholar 

  31. Shaarbaf M, and Toroghinejad M R, Mater Sci Eng A 473 (2008) 28.

    Google Scholar 

  32. Xun Y, and Mohamed F A, Mater Sci Eng A 528 (2011) 5446.

    Google Scholar 

  33. Liu Y, Mai S, Li N, Yiu C K Y, Mao J, Pashley D H, and Tay F R, Acta Biomaterialia 7 (2011) 1742.

    Google Scholar 

  34. Biswas A, Bayer I S, Biris A S, Wang T, Dervishi E, and Faupel F, Adv Colloid Interface Sci 170 (2012) 2.

    Google Scholar 

  35. Vaneker T H J, van Ouwerkerk G, Nilsen K E, Koenis P T G, and van Houten F J A M, CIRP Ann Manuf Technol 57 (2008) 183.

    Google Scholar 

  36. Wolfsteller A, Geyer N, Nguyen-Duc T-K, DasKanungo P, Zakharov N D, Reiche M, Erfurth W, Blumtritt H, Kalem S, Werner P, and Gösele U, Thin Solid Films 518 (2010) 2555.

    Google Scholar 

  37. Kecskes L J, Cho K C, Dowding R J, Schuster B E, Valiev R Z, and Wei Q, Mater Sci Eng A 467 (2007) 33.

    Google Scholar 

  38. Ijichi K, Fukuoka A, Shimojima A, Sugiyama M, and Okubo T, Mater Lett 65 (2011) 828.

    Google Scholar 

  39. Raei M, Toroghinejad M R, Jamaati R, and Szpunar J A, Mater Sci Eng A 527 (2010) 7068.

    Google Scholar 

  40. Storojeva L, Ponge D, Kaspar R, and Raabe D, Acta Materialia 52 (2004) 2209.

    Google Scholar 

  41. Song R, Ponge D, Raabe D, and Kaspar R, Acta Materialia 53 (2005) 845.

    Google Scholar 

  42. Song R, Ponge D, and Raabe D, Acta Materialia 53 (2005) 4881.

    Google Scholar 

  43. Calcagnotto M, Ponge D, Demir E, Raabe D, Mater Sci Eng A 527 (2010) 2738.

    Google Scholar 

  44. Song R, Ponge D, Raabe D, Speer J G, and Matlock D K, Mater Sci Eng A 441 (2006) 1.

    Google Scholar 

  45. Calcagnotto M, Ponge D, and Raabe D, Mater Sci Eng A 527 (2010) 7832.

    Google Scholar 

  46. Azushima A, Kopp R, Korhonen A, Yang D Y, Micari F, Lahoti G D, Groche P, Yanagimoto J, Tsuji N, Rosochowski A, and Yanagida A, CIRP Ann Manuf Technol 57 (2008) 716.

    Google Scholar 

  47. Zahid G H, Huang Y, and Prangnell P B, Acta Materialia 57 (2009) 3509.

    Google Scholar 

  48. Mohebbi M S, and Akbarzadeh A, Mater Sci Eng A 528 (2010) 180.

    Google Scholar 

  49. Jahedi M, and Paydar M H, Mater Sci Eng A 528 (2011) 8742.

    Google Scholar 

  50. Alexandrov I V, Mater Sci Eng A 387389 (2004) 772.

    Google Scholar 

  51. Toroghinejad M R, Ashrafizadeh F, Jamaati R, Hoseini M, and Szpunar J A, Mater Sci Eng A 556 (2012) 351.

    Google Scholar 

  52. Kaune V, and Müller C, Mater Sci Eng A 535 (2012) 1.

    Google Scholar 

  53. Fatemi-Varzaneh S M, Zarei-Hanzaki A, Naderi M, and Roostaei A A, J Alloy Compd 507 (2010) 207.

    Google Scholar 

  54. Zangiabadi A, and Kazeminezhad M, Mater Sci Eng A 528 (2011) 5066.

    Google Scholar 

  55. Chen Y J, Hjelen J, and Roven H J, Trans Nonferrous Met Soc China 22 (2012) 1801.

    Google Scholar 

  56. Jamaati R, and Toroghinejad M R, Mater Des 31 (2010) 4816.

    Google Scholar 

  57. Huang Y, and Prangnell P B, Acta Materialia 56 (2008) 1619.

    Google Scholar 

  58. Aydın M, J Mater Process Technol 212 (2012) 1780.

    Google Scholar 

  59. Fu M W, Tham Y W, Hng H H, and Lim K B, Mater Sci Eng A 526 (2009) 84.

    Google Scholar 

  60. Raei M, Toroghinejad M R, and Jamaati R, Mater Manuf Process 26 (2011) 1352.

    Google Scholar 

  61. Hansen N, and Huang X, Acta Materialia 46 (1998) 1827.

    Google Scholar 

  62. Liao X Z, Zhao Y H, Zhu Y T, Valiev R Z, and Gunderov D V, J Appl Phys 96 (2004) 636.

    Google Scholar 

  63. Li Y S, Tao N R, and Lu K, Acta Materialia 56 (2008) 230.

    Google Scholar 

  64. Wang Y B, Ho J C, Liao X Z, Li H Q, Ringer S P, and Zhu Y T, Appl Phys Lett 94 (2009) 011908.

    Google Scholar 

  65. Wang Y B, Ho J C, Cao Y, Liao X Z, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, and Zhu Y T, Appl Phys Lett 94 (2009) 091911.

    Google Scholar 

  66. Ni S, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, and Zhu Y T, Scripta Materialia 64 (2011) 327.

    Google Scholar 

  67. Huang J Y, Zhu Y T, Liao X Z, and Valiev R Z, Philos Mag Lett 84 (2004) 183.

    Google Scholar 

  68. Zhang L C, Calin M, Paturaud F, Mickel C, and Eckert J, Appl Phys Lett 90 (2007) 201908.

    Google Scholar 

  69. Ivanisenko Y, Maclaren I, Sauvage X, Valiev R Z, and Fecht H J, Acta Materialia 54 (2006) 1659.

    Google Scholar 

  70. Ivanisenko Y, Lojkowski W, Valiev R Z, and Fecht H J, Acta Materialia 51 (2003) 5555.

    Google Scholar 

  71. Senkov O N, Froes F H, Stolyarov V V, Valiev R Z, and Liu J, Scripta Materialia 38 (1998) 1511.

    Google Scholar 

  72. Shen H, Li Z, Günther B, Korznikov A V, Safarov I M, and Valiev R Z, Nanostruct Mater 6 (1995) 385.

    Google Scholar 

  73. Ivanisenko Y V, Korznikov A V, Safarov I M, and Valiev R Z, Nanostruct Mater 6 (1995) 433.

    Google Scholar 

  74. Mazilkin A A, Straumal B B, Rabkin E, Baretzky B, Enders S, Protasova S G, Kogtenkova O A, and Valiev R Z, Acta Materialia 54 (2006) 3933.

    Google Scholar 

  75. Straumal B B, Baretzky B, Mazilkin A A, Phillipp F, Kogtenkova O A, Volkov M N, and Valiev R Z, Acta Materialia 52 (2004) 4469.

    Google Scholar 

  76. Ni S, Sha G, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhu Y T, Langdon T G, and Ringer S P, Mater Sci Eng A 528 (2011) 7500.

    Google Scholar 

  77. Ghosh P, Ray R K, Ghosh C, and Bhattacharjee D, Scripta Materialia 58 (2008) 939.

    Google Scholar 

  78. Saha R, and Ray R K, Metallurg Mater Transact A 40 (2009) 2160.

    Google Scholar 

  79. Saray O, Purcek G, Karaman I, Neindorf T, and Maier H J, Mater Sci Eng A 528 (2011) 6573.

    Google Scholar 

  80. Chen Q Z, and Duggan B J, Metallurg Mater Transact A 35 (2004) 3423.

    Google Scholar 

  81. Saha R, and Ray R K, J Mater Sci 42 (2007) 9548.

    Google Scholar 

  82. Tang Z, and Stumpf W, Mater Character 59 (2008) 717.

    Google Scholar 

  83. Huang C, Hawbolt E B, Chen X, Meadowcroft T R, and Matlock D K, Acta Materialia 49 (2001) 1445.

    Google Scholar 

  84. Wang L Y, Zhang P, Li W, and Huang G J, Int J Min Metallurg Mater 16 (2009) 51.

    Google Scholar 

  85. Saha R, and Ray R K, Mater Lett 62 (2008) 222.

    Google Scholar 

  86. Saha R, Ray R K, and Bhattacharjee D, Scripta Materialia 57 (2007) 257.

    Google Scholar 

  87. Nakao Y, and Miura H, Mater Sci Eng A 528 (2011) 1310.

    Google Scholar 

  88. Sevillano J G, and Aldazabal J, Scripta Materialia 51 (2004) 795.

    Google Scholar 

  89. Liu M Y, Shi B, Wang C, Ji S K, Cai X, and Song H W, Mater Lett 57 (2003) 2798.

    Google Scholar 

  90. Sato Y S, Urata M, Kokawa H, and Ikeda K, Mater Sci Eng A 354 (2003) 298.

    Google Scholar 

  91. Loucif A, Figueiredo R B, Baudin T, Brisset F, Chemam R, and Langdon T G, Mater Sci Eng A 532 (2012) 139.

    Google Scholar 

  92. Padmanabhan K A, Dinda G P, Hahn H, and Gleiter H, Mater Sci Eng A 452453 (2007) 462.

    Google Scholar 

  93. Bata V, and Pereloma E V, Acta Materialia 52 (2004) 657.

    Google Scholar 

  94. Andersson P, Levén J, and Hemming B, J Mater Process Technol 209 (2009) 884.

    Google Scholar 

  95. Groche P, Fritsche D, Tekkaya E A, Allwood J M, Hirt G, and Neugebauer R, CIRP Ann Manuf Technol 56 (2007) 635.

    Google Scholar 

  96. Merklein M, Allwood J M, Behrens B-A, Brosius A, Hagenah H, Kuzman K, Mori K, Tekkaya A E, and Weckenmann A, CIRP Ann Manuf Technol 61 (2012) 725.

    Google Scholar 

  97. Tsuji N, Toyoda T, Minamino Y, Koizumi Y, Yamane T, Komatsu M, and Kiritani M, Mater Sci Eng A 350 (2003) 108.

    Google Scholar 

  98. Jamaati R, Toroghinejad M R, Hoseini M, and Szpunar J A, Mater Sci Eng A 528 (2011) 3573.

    Google Scholar 

  99. Chang H, Zheng M Y, Gan W M, Wu K, Maawad E, and Brokmeier H G, Scripta Materialia 61 (2009) 717.

    Google Scholar 

  100. Wu K, Chang H, Maawad E, Gan W M, Brokmeier H G, and Zheng M Y, Mater Sci Eng A 527 (2010) 3073.

    Google Scholar 

  101. Jamaati R, Toroghinejad M R, Hoseini M, and Szpunar J A, Mater Sci Technol 28 (2012) 406.

    Google Scholar 

  102. Tsuji N, Saito Y, Lee S H, and Minamino Y, Adv Eng Mater 5 (2003) 338.

    Google Scholar 

  103. Saito Y, Tsuji N, Utsunomiya H, Sakai T, and Hong R G, Scripta Materialia 39 (1998) 1221.

    Google Scholar 

  104. Saito Y, Utsunomiya H, Tsuji N, and Sakai T, Acta Materialia 47 (1999) 579.

    Google Scholar 

  105. Lee S H, Saito Y, Tsuji N, Utsunomiya H, and Sakai T, Scripta Materialia 46 (2002) 281.

    Google Scholar 

  106. Jamaati R, Amirkhanlou S, Toroghinejad M R, and Niroumand B, J Mater Eng Perform 21 (2012) 1249.

    Google Scholar 

  107. Pasebani S, and Toroghinejad M R, Mater Sci Eng A 527 (2010) 491.

    Google Scholar 

  108. Jamaati R, and Toroghinejad M R, Mater Sci Technol 27 (2011) 1101.

    Google Scholar 

  109. Jamaati R, and Toroghinejad M R, Mater Sci Eng A 527 (2010) 2320.

    Google Scholar 

  110. Jamaati R, and Toroghinejad M R, Mater Des 31 (2010) 4508.

    Google Scholar 

  111. Bay N, Met Construct 18 (1986) 369.

    Google Scholar 

  112. Bay N, Met Construct 18 (1986) 486.

    Google Scholar 

  113. Bay N, Met Construct 18 (1986) 625.

    Google Scholar 

  114. Jamaati R, and Toroghinejad M R, Mater Sci Eng A 527 (2010) 4858.

    Google Scholar 

  115. Jamaati R, and Toroghinejad M R, J Mater Eng Perform 21 (2012) 859.

    Google Scholar 

  116. Jamaati R, and Toroghinejad M R, Mater Sci Technol 27 (2011) 1648.

    Google Scholar 

  117. Quadir M Z, and Wolz A, Hoffman M, Ferry M, Scripta Mater 58 (2008) 959.

    Google Scholar 

  118. Vaidyanath L R, Nicholas M G, Milner D R, Br Weld J 6 (1959) 13.

    Google Scholar 

  119. Mohamed H A, and Washburn J, Weld J 54 (1975) 302s.

  120. Granjun H, Fundamental of welding metallurgy. Abington Publishing, Cambridge (1991).

    Google Scholar 

  121. Soltani M A, Jamaati R, and Toroghinejad M R, Mater Sci Eng A 550 (2012) 367.

    Google Scholar 

  122. Jamaati R, and Toroghinejad M R, J Mater Eng Perform 20 (2011) 191.

    Google Scholar 

  123. Hashemi, Jamaati R, and Toroghinejad M R, Mater Sci Eng A 532 (2012) 275.

    Google Scholar 

  124. Li L, Nagai K, and Yin F, Sci Technol Adv Mater 9 (2008) 023001.

  125. Jamaati R, Amirkhanlou S, Toroghinejad M R, and Niroumand B, Mater Charact 62 (2011) 1228.

    Google Scholar 

  126. Callister W D, and Rethwisch D G, Materials science and engineering: an introduction, 8th edition, Wiley, New York (2010).

    Google Scholar 

  127. Jamaati R, Amirkhanlou S, Toroghinejad M R, and Niroumand B, Mater Sci Eng A 528 (2011) 2143.

    Google Scholar 

  128. Krallics G, and Lenard J G, J Mater Process Technol 152 (2004) 154.

    Google Scholar 

  129. Kamikawa N, Sakai T, and Tsuji N, Acta Materialia 55 (2007) 5873.

    Google Scholar 

  130. Kolahi A, Akbarzadeh A, and Barnett M R, J Mater Process Technol 209 (2009) 1436.

    Google Scholar 

  131. Yoda R, Shibata K, Morimitsu T, Terada D, and Tsuji N, Scripta Materialia 65 (2011) 175.

    Google Scholar 

  132. Tamimi S, Ketabchi M, and Parvin N, Mater Des 30 (2009) 2556.

    Google Scholar 

  133. Kamikawa N, Tsuji N, and Minamino Y, Sci Technol Adv Mater 5 (2004) 163.

    Google Scholar 

  134. Li B L, Tsuji N, and Kamikawa N, Mater Sci Eng A 423 (2006) 331.

    Google Scholar 

  135. Lee S H, Utsunomiya H, and Sakai T, Mater Trans 45 (2004) 2177.

    Google Scholar 

  136. Tsuji N, Ueji R, and Minamino Y, Scripta Materialia 47 (2002) 69.

    Google Scholar 

  137. Huang X, Kamikawa N, and Hansen N, J Mater Sci 45 (2010) 4761.

    Google Scholar 

  138. Costa A L M, Reis A C C, Kestens L, and Andrade M S, Mater Sci Eng A 406 (2005) 279.

    Google Scholar 

  139. Tsuji N, Saito Y, Utsunomiya H, and Tanigawa S, Scripta Materialia 40 (1999) 795.

    Google Scholar 

  140. Tsuji N, Saito Y, Utsunomiya H, and Sakai T, in The Proceeding of the Fourth International Conference on Recrystallization and Phenomena, The Japan Institute of Metals (1999), vol 13, p 309.

  141. Roy S, Singh S, Suwas S, Kumar S, and Chattopadhyay K, Mater Sci Eng A 528 (2011) 8469.

    Google Scholar 

  142. Jamaati R, and Toroghinejad M R, Mater Sci Eng A 527 (2010) 7430.

    Google Scholar 

  143. Xing Z P, Kang S B, and Kim H W, Scripta Materialia 45 (2001) 597.

    Google Scholar 

  144. Jamaati R, Toroghinejad M R, Dutkiewicz J, and Szpunar J A, Mater Des 35 (2012) 37.

    Google Scholar 

  145. Park K T, Kwon H J, Kim W J, and Kim Y S, Mater Sci Eng A 316 (2001) 145.

    Google Scholar 

  146. Jamaati R, and Toroghinejad M R, Mater Sci Eng A 527 (2010) 4146.

    Google Scholar 

  147. Valiev R Z, Mater Sci Eng A 234236 (1997) 59.

    Google Scholar 

  148. Segal V M, Mater Sci Eng A 271 (1999) 322.

    Google Scholar 

  149. Segal V M, Mater Sci Eng A 197 (1995) 157.

    Google Scholar 

  150. Segal V M, Methods of stress–strain analysis in metal forming Minsk, Sc.D. Thesis (1974) (in Russian).

  151. Valiev R Z, Gunderov D V, Zhilyaev A P, Popov A G, and Pushin V G, J Metastab Nanocrystal Mater 22 (2004) 21.

    Google Scholar 

  152. Han B Q, and Yue S, J Mater Process Technol 136 (2003) 100.

    Google Scholar 

  153. Beyerlein I J, and Tóth L S, Progr Mater Sci 54 (2009) 427.

    Google Scholar 

  154. Nakashima K, Horita Z, Nemoto M, and Langdon T G, Acta Materialia 46 (1998) 1589.

    Google Scholar 

  155. Nakashima K, Horita Z, Nemoto M, and Langdon T G, Mater Sci Eng A 281 (2000) 82.

    Google Scholar 

  156. Gazder A A, Cao W, Davies C H J, and Pereloma E V, Mater Sci Eng A 497 (2008) 341.

    Google Scholar 

  157. Gazder A A, Hazra S S, and Pereloma E V, Mater Sci Eng A 530 (2011) 492.

    Google Scholar 

  158. Li S, Gazder A A, Beyerlein I J, Pereloma E V, and Davies C H J, Acta Materialia 54 (2006) 1087.

    Google Scholar 

  159. Purcek G, Saray O, Karman I, and Maier H J, Metallurg Mater Transact A 43 (2012) 1884.

    Google Scholar 

  160. Hadzima B, Janecek M, Estrin Y, and Kim H S, Mater Sci Eng A 462 (2007) 243.

    Google Scholar 

  161. Li S, Gazder A A, Beyerlein I J, Pereloma E V, and Davies C H J, Acta Materialia 55 (2007) 1017.

    Google Scholar 

  162. Gazder A A, DallaTorre F, Gu C F, Davies C H J, and Pereloma E V, Mater Sci Eng A 415 (2006) 126.

    Google Scholar 

  163. Hazra S S, Gazder A A, and Pereloma E V, Mater Sci Eng A 524 (2009) 158.

    Google Scholar 

  164. Máthis K, Krajnák T, Kuzel R, and Gubicza J, J Alloy Compd 509 (2011) 3522.

    Google Scholar 

  165. De Messemaeker J, Verlinden B, and Van Humbeeck J, Acta Materialia 53 (2005) 4245.

    Google Scholar 

  166. Medeiros N, Lins J F C, Moreira L P, and Gouvea J P, Mater Sci Eng A 489 (2008) 363.

    Google Scholar 

  167. Li S, Donohue B R, and Kalidindi S R, Mater Sci Eng A 480 (2008) 17.

    Google Scholar 

  168. Li S, Beyerlein I J, and Necker C T, Acta Materialia 54 (2006) 1397.

    Google Scholar 

  169. Li S, Beyerlein I J, Necker C T, Alexander D J, and Bourke M, Acta Materialia 52 (2004) 4859.

    Google Scholar 

  170. Ferrasse S, Segal V M, Hartwig K T, and Goforth R E, Metallurg Mater Transact A 28 (1997) 1047.

    Google Scholar 

  171. Iwahashi Y, Furukawa M, Horita Z, and Nemoto M, Langdon T G, Metallurg Mater Transact A 29 (1998) 2245.

    Google Scholar 

  172. Iwahashi Y, Horita Z, Nemoto M, and Langdon T G, Acta Materialia 45 (1997) 4733.

    Google Scholar 

  173. Prangnell P B, Bowen J R, and Apps P J, Mater Sci Eng A 375377 (2004) 178.

    Google Scholar 

  174. Iwahashi Y, Horita Z, Nemoto M, and Langdon T G, Acta Materialia 46 (1998) 3317.

    Google Scholar 

  175. Niendorf T, Canadinc D, Maier H J, Karaman I, and Sutter S G, Int J Mater Res 97 (2006) 1328.

    Google Scholar 

  176. Stolyarov V V, Zhu Y T, Alexandrov I V, Lowe T C, and Valiev R Z, Mater Sci Eng A 299 (2001) 59.

    Google Scholar 

  177. Sergueeva A V, Stolyarov V V, Valiev R Z, and Mukherjee A K, Scripta Materialia 45 (2001) 747.

    Google Scholar 

  178. Zhu K Y, Vassel A, Brisset F, Lu K, and Lu J, Acta Materialia 52 (2004) 4101.

    Google Scholar 

  179. Belyakov A, Kimura Y, and Tsuzaki K, Mater Sci Eng A 403 (2005) 249.

    Google Scholar 

  180. Mathis K, Krajnak T, Kuzel R, and Gubicza J, J Alloy Compd 509 (2011) 3522.

    Google Scholar 

  181. Shin D H, Park J J, Chang S Y, Lee Y K, and Park K T, ISIJ Int 42 (2002) 1490.

    Google Scholar 

  182. Han B Q, Lavernia E J, and Mohamed F A, Metallurg Mater Transact A 35 (2004) 1343.

    Google Scholar 

  183. Wang Y M, and Ma E, Mater Sci Eng A 375377 (2004) 46.

    Google Scholar 

  184. Yu C Y, Kao P W, and Chang C P, Acta Materialia 53 (2005) 4019.

    Google Scholar 

  185. Shin D H, Met Mater Int 7 (2001) 573.

    Google Scholar 

  186. Tsuji N, Kamikawa N, Ueji R, Takata N, Koyama H, and Terada D, ISIJ Int 48 (2008) 1114.

    Google Scholar 

  187. Zhu Y T, and Langdon T G, JOM 56 (2004) 58.

    Google Scholar 

  188. Shen Y F, Xue W Y, Wang Y D, Liu Y D, and Zuo L, Mater Sci Eng A 496 (2008) 383.

    Google Scholar 

  189. Hansen N, Scripta Materialia 51 (2004) 801.

    Google Scholar 

  190. Li B L, Godfrey A, Meng Q C, Liu Q, and Hansen N, Acta Materialia 52 (2004) 1069.

    Google Scholar 

  191. Wang Y M, and Ma E, Acta Materialia 52 (2004) 1699.

    Google Scholar 

  192. Wang T S, Li Z, Zhang B, Zhang X J, Deng J M, and Zhang F C, Mater Sci Eng A 527 (2010) 2798.

    Google Scholar 

  193. Wang Y M, Chen M W, Zhou F H, and Ma E, Nature 419 (2002) 912.

    Google Scholar 

  194. Bhowmik A, Biswas S, Suwas S, Ray R K, and Bhattacharjee D, Metallurg Mater Transact A 40 (2009) 2729.

    Google Scholar 

  195. Humphreys F J, and Hatherly M, Recrystallization and Related Annealing Phenomena, 2nd edition, Elsevier Science Ltd., Oxford (2004).

    Google Scholar 

  196. Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Juul Jensen D, Kassner M E, King W E, McNelly T R, McQueen H J, and Rollett A D, Mater Sci Eng A 238 (1997) 219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohollah Jamaati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamaati, R., Toroghinejad, M.R., Edris, H. et al. Fabrication of Nano/Ultra-Fine Grained IF Steel via SPD Processes: a Review. Trans Indian Inst Met 67, 787–802 (2014). https://doi.org/10.1007/s12666-014-0404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0404-9

Keywords

Navigation